首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation of multifunctional polymers and block copolymers by a straightforward one‐pot reaction process that combines enzymatic transacylation with light‐controlled polymerization is described. Functional methacrylate monomers are synthesized by enzymatic transacylation and used in situ for light‐controlled polymerization, leading to multifunctional methacrylate‐based polymers with well‐defined microstructure.

  相似文献   


2.
A series of fluorene‐based conjugated polymers containing the aggregation‐induced emissive (AIE)‐active tetraphenylethene and dicarboxylate pseudocrown as a receptor exhibits a unique dual‐mode sensing ability for selective detection of lead ion in water. Fluorescence turn‐off and turn‐on detections are realized in 80%–90% and 20% water in tetrahydrofuran (THF), respectively, for lead ion with a concentration as low as 10−8 m .

  相似文献   


3.
The formation of a poly(2,6‐carbazole) derivative during an electrochemical polymerization process is shown. Comparison of 3,5‐bis(9‐octyl‐9H‐carbazol‐2‐yl)pyridine and 3,5‐bis(9‐octyl‐9H‐carbazol‐3‐yl)pyridine by electrochemical and UV–Vis‐NIR spectroelectrochemical measurements and DFT (density functional theory) calculation prove the formation of a poly(2,6‐carbazole) derivative. Both of the compounds form stable and electroactive conjugated polymers.

  相似文献   


4.
Temperature‐triggered switchable nanofibrous membranes are successfully fabricated from a mixture of cellulose acetate (CA) and poly(N‐isopropylacrylamide) (PNIPAM) by employing a single‐step direct electrospinning process. These hybrid CA‐PNIPAM membranes demonstrate the ability to switch between two wetting states viz. superhydrophilic to highly hydrophobic states upon increasing the temperature. At room temperature (23 °C) CA‐PNIPAM nanofibrous membranes exhibit superhydrophilicity, while at elevated temperature (40 °C) the membranes demonstrate hydrophobicity with a static water contact angle greater than 130°. Furthermore, the results here demonstrate that the degree of hydrophobicity of the membranes can be controlled by adjusting the ratio of PNIPAM in the CA‐PNIPAM mixture.

  相似文献   


5.
Diselenide‐containing polymers are facilely synthesized from polymers prepared by atom transfer radical polymerization (ATRP). Benefiting from the ATRP technology, this protocol provides a flexible route for controlling the polymer structure, which allows for a great variety of architectures of selenium‐containing polymer materials for applications in various fields. The oxidative and reductive responsive behavior of the obtained diselenide‐containing polymers is also investigated.

  相似文献   


6.
Diarylbutadiyne derivatives are ideal monomers for providing the π‐electron‐conjugated system of polydiacetylenes (PDAs). The geometrical parameters for diacetylene topochemical polymerization are known. However, control of the molecules under these parameters is yet to be addressed. This work shows that by simply tailoring diarylbutadiyne with amide side‐chain substituents, the arrangement of the substituents and the resulting hydrogen bond framework allows formation of π‐electron‐conjugated PDA.

  相似文献   


7.
In this communication, a mild, efficient, and generalized polycondensation route is developed for poly(disulfide)s from commercially available monomers 2,2′‐dithiodipyridine and 1,6‐hexanedithiol. Using the stoichiometric imbalance between the two monomers, it is possible to produce telechelic poly(disulfide)s of predictable molecular weight with reactive pyridyl disulfide groups at both the terminals of the chain. The two terminal pyridyl disulfide groups can be quantitatively replaced by a functional thiol using selective thiol‐disulfide exchange and thus produces functional telechelic poly(disulfide)s, which can be used as a macroinitiator to initiate ring‐opening poly­merization of a cyclic lactide monomer generating an ABA‐type triblock copolymer with degradable B block.

  相似文献   


8.
Amino‐acid‐based chiral surfactants with polymerizable moieties are synthesized, and a versatile approach to prepare particles thereof with a chiral surface functionality is presented. As an example of an application, the synthesized particles are tested for their ability as nucleating agents in the enantioselective crystallization of amino acid conglomerate systems, taking rac‐asparagine as a model system. Particles resulting from chiral surfactants with different tail groups are compared and the results demonstrate that only the chiral nanoparticles made of the polymerizable surfactant are able to act efficiently as nucleation agent in enantioselective crystallization.

  相似文献   


9.
A simple and effective airflow method to prepare sandwich‐type block copolymer films is reported. The films are composed of three layers: vertically oriented nanocylinders align in both upper and bottom layers and irregular nanocylinders exist in the bulk of the film. The vertically oriented nanocylinders in both sides can provide high accessibility to ions and ensures the exchange of chemical species between the membrane and external environment, while the irregularly oriented nanocylinders in the middle part of the film can prolong the pathway of ions transportation and enhance ions selectivity.

  相似文献   


10.
The synthesis of highly efficient two‐photon uncaging groups and their potential use in functional conjugated polymers for post‐polymerization modification are reported. Careful structural design of the employed nitrophenethyl caging groups allows to efficiently induce bond scission by a two‐photon process through a combination of exceptionally high two‐photon absorption cross‐sections and high reaction quantum yields. Furthermore, π‐conjugated polyfluorenes are functionalized with these photocleavable side groups and it is possible to alter their emission properties and solubility behavior by simple light irradiation. Cleavage of side groups leads to a turn‐on of the fluorescence while solubility of the π‐conjugated materials is drastically reduced.

  相似文献   


11.
In this study, a new type of functional, self‐assembled nanostructure formed from porphyrins and polyamidoamine dendrimers based on hydrogen bonding in an aqueous solution is presented. As the aggregates formed are promising candidates for solar‐energy conversion, their photocatalytic activity is tested using the model reaction of methyl viologen reduction. The self‐assembled structures show significantly increased activity as compared to unassociated porphyrins. Details of interaction forces driving the supramolecular structure formation and regulating catalytic efficiency are fundamentally discussed.

  相似文献   


12.
Novel macrocyclic amine‐linked oligocarbazole hollow microspheres are synthesized via a one‐step oxidative method in aqueous solution. Upon altering the oxidants and acidic media, the average diameters of the obtained hollow microspheres are tunable from 0.23 to 2.0 μm. With attractive amine and carbazole functionalities, exposed surface area, thermostability, and photoluminescent properties, the amine‐linked oligocarbazole hollow microspheres are directly assembled to yield heavy metal sorbents with excellent selectivity and recyclability, shown to efficiently remove lead from contaminated water.

  相似文献   


13.
Supramolecular polyfluorenol enable assembly into conjugated polymer nanoparticles (CPNs). Poly{9‐[4‐(octyloxy)phenyl]fluoren‐9‐ol‐2,7‐diyl} (PPFOH)‐based supramolecular nanoparticles are prepared via reprecipitation. PPFOH nanoparticles with diameters ranging from 40 to 200 nm are obtained by adding different amounts of water into DMF solution. Size‐dependent luminescence is observed in PPFOH‐based hydrogen‐bonded nanoparticles that is different from that of poly(9,9‐dioctylfluorenes). Finally, white light‐emitting devices using CPNs with a size of 80 nm exhibit white emission with the CIE coordinates (0.31, 0.34). Amphiphilic conjugated polymer nanoparticles are potential organic nano‐inks for the fabrication of organic devices in printed electronics.

  相似文献   


14.
Swell! Superabsorbent, mechanically robust, high‐porosity hydrogels based on poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) have been successfully synthesized by templating within high internal phase emulsions (HIPEs). These hydrogel polyHIPEs (HG‐PHs) exhibit unusually high uptakes of water and of artificial urine through structure‐ and crosslinking‐dependent hydrogel‐swelling‐driven void expansion. An HG‐PH with 3.1 mmol g−1 of highly accessible sulfonic acid groups exhibits a 7 meq NaOH ion exchange capacity per gram polymer and rapid dye absorption. The highly swollen HG‐PHs do not fail at compressive strains of up to 60%, they retain water and recover their shapes upon the removal of stress. Unusually, the dry hydrogels have relatively high compressive moduli and achieve relatively high stresses at 70% strain.

  相似文献   


15.
The combination of external potential dynamics and Brownian dynamics is introduced to study the kinetics of orientational ordering in block copolymer/superparamagnetic nanoparticle composites where the particles are smaller than the domain spacing and preferentially segregate into one block of the copolymer. This simulation method accounts for both excluded volume interactions and dipolar interactions between particles to quantify alignment kinetics. Two‐dimensional simulations reveal that higher dipolar interaction strengths lead to faster alignment of the block copolymer, where the orientation kinetics obeys an exponential rate law. The observed rate of alignment increases with increasing dipolar interaction strength and is dependent on the initial state of the block copolymer. The primary mechanism of orientational ordering is found to be the redistribution of monomer segments leading to bridging and growth of the block copolymer domains around the nanoparticles.

  相似文献   


16.
Surface‐initiated photo‐induced copper‐mediated radical polymerization is employed to graft a wide range of polyacrylate brushes from silicon substrates at extremely low catalyst concentrations. This is the first time that the controlled nature of the reported process is demonstrated via block copolymer formation and re‐initiation experiments. In addition to unmatched copper catalyst concentrations in the range of few ppb, film thicknesses up to almost 1 μm are achieved within only 1 h.

  相似文献   


17.
This work demonstrates a new reactive and functional hybrid (S‐MMA‐POSS) of polyhedral oligomeric silsesquioxane (POSS) and sulfur prepared with a direct reaction between a multifunctional methacrylated POSS compound (MMA‐POSS) and elemental sulfur (S8) through the “inverse vulcanization” process. S‐MMA‐POSS is an effective building block for imparting self‐healing ability to the corresponding thermally crosslinked POSS‐containing nanocomposites through a self‐curing reaction and co‐curing reaction with conventional thermosetting resins. Moreover, S‐MMA‐POSS is also a useful precursor for preparation of materials with high transparency in mid‐infrared region.

  相似文献   


18.
A double hydrophilic block copolymer, poly(ethylene glycol)‐poly(3‐dimethyl (methacryloyloxyethyl) ammonium propane sulfonate) (PEG‐SB), is synthesized by reversible addition‐fragmentation transfer (RAFT) polymerization using PEG methyl ether (4‐cyano‐4‐pentanoate dodecyl trithiocarbonate) as a chain transfer agent. PEG‐SB forms multi‐layered microspheres with dipole‐dipole interactions of the SB side chains as the driving force. The PEG‐SB polymers show an upper critical solution temperature (UCST) and the UCST is controllable by the polymerization degree. The PEG‐SB microspheres are dissociated above the UCST and then monodispersed microspheres (∼1 μm) are obtained when the solution temperature is decreased below the UCST again. The disassociation/association of the microspheres is also controllable using the concentration of NaCl. These multi‐responsive microspheres could be a powerful tool in the field of nano‐biotechnology.

  相似文献   


19.
Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well‐soluble salt triethyloctylammonium chloride (Et3OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved.

  相似文献   


20.
A novel one‐component type II polymeric photoinitiator, poly(vinyl alcohol)–thioxanthone (PVA–TX), is synthesized by a simple acetalization process and characterized. PVA–TX enables photopolymerization of methyl methacrylate and acrylamide in both organic and aqueous media. Photopolymerization proceeds even in the absence of a co‐initiator since PVA–TX possesses both chromophoric and hydrogen donating sites in the structure.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号