首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An organic–inorganic molecular hybrid containing the Dawson polyoxometalate, ((C4H9)4N)5H‐ [P2V3W15O59(OCH2)3CNHCOC15H31], was synthesized and its surfactant‐like amphiphilic properties, represented by the formation of bilayer vesicles, were studied in polar solvents. The vesicle size decreases with both decreasing hybrid concentration and with increasing polarity of the solvent, independently. The self‐assembly behavior of this hybrid can be controlled by introducing different counterions into the acetonitrile solutions. The addition of ZnCl2 and NaI can cause a gradual decrease and increase of vesicular sizes, respectively. Tetraalkylammonium bromide is found to disassemble the vesicle assemblies. Moreover, the original counterions of the hybrid can be replaced with protons, resulting in pH‐dependent formation of vesicles in aqueous solutions. The hybrid surfactant can further form micro‐needle structures in aqueous solutions upon addition of Ca2+ ions.  相似文献   

3.
4.
5.
Reversible vesicles from poly(L ‐glutamic acid)65‐block‐poly[(L ‐lysine)‐ran‐(L ‐3,4‐dihydroxyphenylalanine)]75 [PLGA65‐b‐P(LL‐r‐DOPA)75] block copolypeptide adopt different configurations depending on the surrounding pH. At pH = 3, AFM and TEM images show ellipsoidal morphologies, whereas at pH = 12 both TEM and AFM reveal the formation of hollow vesicles. At pH = 12, the P(LL‐r‐DOPA) block forms the internal layer of the vesicle shell and the subsequent oxygen‐mediated oxidation of the phenolic groups of the DOPA lead to the formation of quinonic intermediates, which undergo intermolecular dimerization to stabilize the vesicles via in situ cross‐linking. Consequently, the vesicles maintain their shape even when the pH is reversed back to 3, as confirmed by AFM and TEM.

  相似文献   


6.
Two triblock polymers, tetraaniline‐block‐poly(N‐isopropyl acrylamide)‐block‐poly(hydroxyethyl acrylate) (TA‐b‐PNIPAM‐b‐PHEA) and TA‐b‐PHEA‐b‐PNIPAM, were synthesized with unambiguous structure by a two step method. The difference of these two diblock polymers is the connection order of carboxyl group to block, e.g., carboxyl group to PNIPAM block for PNIPAM‐b‐PHEA and to PHEA block for PHEA‐b‐PNIPAM. Secondly, block tetraaniline was linked to the diblock polymer through amidation to yield the corresponding triblock copolymer. Both of them have almost the identical chemical compositions. The only difference is the connection order of each block in the triblock polymers. When they were self‐assembled at 45°C in a suitable solution, both of their aggregates have spherical shape with slight defects on their surface with the average diameter of about 400 nm. However, when their aggregate dispersion was cooled down to 20°C, only TA‐b‐PHEA‐b‐PNIPAM's morphology changed, forming worm‐like aggregates with the diameter of about 100–200 nm transformed from spherical aggregates. Both amphiphilic property and position of each block in this triblock copolymer are very essential for this morphology transformation. Since the worm‐like aggregates presented here by our group have hollow structure inside, its controlled release properties for doxorubicin were evaluated. Drug release experiment indicated that along with the temperature changes, the rearrangement of the intermediate layer structure caused morphology change in aggregate, thus accelerating the speed of drug release.  相似文献   

7.
Summary: Organic‐inorganic hybrid materials consisting of nanosized silica particles with surface grafted PS or PS‐b‐PMMA were synthesized using ATRP. These hybrid materials were used in the fabrication of highly‐ordered isoporous membranes. Optical characterization revealed that the membranes consisted of hexagonally ordered pores of uniform size. The combination of an open pore structure and high surface area makes isoporous membranes into materials of high interest in fields as biotechnology and photonics.

Image from optical microscope of hybrid nanoparticle membrane of SiO2g‐PS with hexagonally‐ordered pores.  相似文献   


8.
9.
10.
An artificial glycocalix self‐assembles when unilamellar bilayer vesicles of amphiphilic β‐cyclodextrins are decorated with maltose and lactose by host–guest interactions. To this end, maltose and lactose were conjugated with adamantane through a tetra(ethyleneglycol) spacer. Both carbohydrate–adamantane conjugates strongly bind to β‐cyclodextrin (Ka≈4×104 M ?1). The maltose‐decorated vesicles readily agglutinate (aggregate) in the presence of the lectin concanavalin A, whereas the lactose‐decorated vesicles agglutinate in the presence of peanut agglutinin. The orthogonal multivalent interaction in the ternary system of host vesicles, guest carbohydrates, and lectins was investigated by using isothermal titration calorimetry, dynamic light scattering, UV/Vis spectroscopy, and cryogenic transmission electron microscopy. It was shown that agglutination is reversible, and the noncovalent interaction can be suppressed and eliminated by the addition of competitive inhibitors, such as D ‐glucose or β‐cyclodextrin. Also, it was shown that agglutination depends on the surface coverage of carbohydrates on the vesicles.  相似文献   

11.
Self‐assembly of macromolecules is fundamental to life itself, and historically, these systems have been primitively mimicked by the development of amphiphilic systems, driven by the hydrophobic effect. Herein, we demonstrate that self‐assembly of purely hydrophilic systems can be readily achieved with similar ease and success. We have synthesized double hydrophilic block copolymers from polysaccharides and poly(ethylene oxide) or poly(sarcosine) to yield high molar mass diblock copolymers through oxime chemistry. These hydrophilic materials can easily assemble into nanosized (<500 nm) and microsized (>5 μm) polymeric vesicles depending on concentration and diblock composition. Because of the solely hydrophilic nature of these materials, we expect them to be extraordinarily water permeable systems that would be well suited for use as cellular mimics.  相似文献   

12.
Based on their rigid‐rod structure all‐conjugated, rod‐rod block copolymers show a preferred tendency to self‐assemble into low‐curvature vesicular or lamellar nanostructures independent from their specific chemical structure and composition. This unique and attractive behaviour is clearly illustrated in a few examples of such all‐conjugated block copolymers. The resulting nanostructured heteromaterials may find applications in electronic devices or artificial membranes.

  相似文献   


13.
Fluorescent vesicles considered as a mimic of natural primitive cells are prepared from poly(3‐hexylthiophene)‐block‐poly(3‐O‐methacryloyl‐D‐galactopyranose) P3HT‐b‐PMAGP copolymers. The unique characteristic of such vesicular nanostructures is their architecture, which comprises a hydrophobic π‐conjugated P3HT wall stabilized by a hydrophilic PMAGP interface featuring glucose units. The results of this work offer a very efficient and straightforward method for engineering well‐controlled fluorescent nanoparticles (without the addition of dyes), which provide an excellent support to the study of carbohydrate‐protein interactions.

  相似文献   


14.
A novel amphiphilic diblock copolymer composed of a hydrophilic poly(ethylene oxide) and a hydrophobic polymethacrylate with photochromic azopyridine moieties in the side groups was synthesized by atom transfer radical polymerization. The copolymeric vesicles showed photoinduced circular process including fusion, damage and defect formation, disruption, disintegration and rearrangement in H2O/THF during the irradiation of UV light. The process of photoresponsive cycle can be inhibited at any moment by visible light.

  相似文献   


15.
Taking tetraoxacalix[2]arene[2]triazine as a functionalization platform, a series of new amphiphilic molecules were synthesized in 18 to 53 % yields by using a fragment coupling protocol. These amphiphilic molecules self‐assembled into stable vesicles in a mixture of THF and water, with the surface of the vesicles engineered by electron‐deficient cavities. Various anions are able to selectively influence the size of self‐assembled vesicles, following the order of F?<ClO4?<SCN?<BF4?<Br?<Cl?<NO3?, as revealed by DLS measurements. Such a sequence was independent with the hydration cost and in agreement with the binding strength of anions with tetraoxacalix[2]arene[2]triazine host molecule, indicating that the anion–π interaction most probably competed over other possible weak interactions and accounted for this interesting selectivity. In addition, the chloride permeation process across the membrane of the vesicles was also preliminarily studied by means of fluorescent experiments. This study, in addition to providing the potentiality of heteracalixaromatics as new models to construct functional vesicles, opens a new avenue to study the anion–π interactions in aqueous and also potentially in living systems.  相似文献   

16.
We developed a simple route to prepare stabilized micelles and nanovesicles in aqueous solutions. A hydrophobic poly(succinimide) (PSI) was conjugated with the hydrophilic poly(ethylene glycol) (PEG) as a new type of cross‐linkable unit. Spherical aggregates were formed when dissolving the amphiphilic PEG682b‐PSI130 copolymer in aqueous solutions directly, and polymer nanovesicles were prepared by a precipitation‐dialysis method using PEG455b‐PSI130 copolymer. Bifunctional primary amine was added to the micelle or nanovesicle solutions to prepare cross‐linked structures via aminolysis reaction of the succinimide units. The degree of cross‐linking was controlled by adjusting the molar ratio of the cross‐linker to the succinimide units. Increasing the degree of cross‐linking leads to the compaction of the micelle core thus reduced diameter. The cross‐linked polymer micelles or nanovesicles maintained their morphology in extremely diluted solutions because of their structural stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
18.
In this article, the synthesis of a series of conjugated rod–rod block copolymers based on poly(3‐hexylthiophene) (P3HT) and poly(phenyl isocyanide) (PPI) building blocks in a single pot is presented. Ni‐catalyzed Grignard metathesis polymerization of 2,5‐dibromo‐3‐hexylthiophene and subsequent addition of 4‐isocyanobenzoyl‐2‐aminoisobutyric acid decyl ester in the presence of Ni(dppp)Cl2 as a single catalyst afford P3HT‐b‐PPI with tunable molecular weights and compositions. In solid state, microphase separation occurred as differential scanning calorimetric analysis of P3HT‐b‐PPI revealed two glass transition temperatures. In solutions, the copolymers can self‐assemble into spherical aggregates with P3HT core and PPI shell in tetrahydrofuran and exhibit amorphous state in CHCl3. However, atomic force microscopy revealed that the block copolymers self‐assemble into nanofibrils on the substrate. These unique features warrant the resultant conjugated rod–rod copolymers' potential study in organic photovoltaic and other electronic devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2939–2947  相似文献   

19.
Biological membranes play a key role for the function of living organisms. Thus, many artificial systems have been designed to mimic natural cell membranes and their functions. A useful concept for the preparation of functional membranes is the embedding of synthetic amphiphiles into vesicular bilayers. The dynamic nature of such noncovalent assemblies allows the rapid and simple development of bio‐inspired responsive nanomaterials, which find applications in molecular recognition, sensing or catalysis. However, the complexity that can be achieved in artificial functionalized membranes is still rather limited and the control of their dynamic properties and the analysis of membrane structures down to the molecular level remain challenging.  相似文献   

20.
The preparation and aqueous self‐assembly of newly Y‐shaped amphiphilic block polyurethane (PUG) copolymers are reported here. These amphiphilic copolymers, designed to have two hydrophilic poly(ethylene oxide) (PEO) tails and one hydrophobic alkyl tail via a two‐step coupling reaction, can self‐assemble into giant unilamellar vesicles (GUVs) (diameter ≥ 1000 nm) with a direct dissolution method in aqueous solution, depending on their Y‐shaped structures and initial concentrations. More interesting, the copolymers can self‐assemble into various distinct nano‐/microstructures, such as spherical micelles, small vesicles, and GUVs, with the increase of their concentrations. The traditional preparation methods of GUVs generally need conventional amphiphilic molecules and additional complicated conditions, such as alternating electrical field, buffer solution, or organic solvent. Therefore, the self‐assembly of Y‐shaped PUGs with a direct dissolution method in aqueous solution demonstrated in this study supplies a new clue to fabricate GUVs based on the geometric design of amphiphilic polymers.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号