首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探讨硫酸盐还原菌胞外多聚物(EPS)吸附Cu2+的特性,采用热力学平衡实验研究了EPS对Cu2+的吸附行为,并通过红外光谱(FTIR)和带能谱仪的扫描电镜(SEM-EDS)分析EPS吸附Cu2+前后官能团以及元素组成的变化来研究EPS吸附Cu2+的机理.结果表明,硫酸盐还原菌EPS对Cu2+的吸附平衡能较好地用Fre...  相似文献   

2.
Abstract

The effect of high hydrostatic pressure, up to 12GPa, on the intramolecular phonon frequencies and the material stability of the two-dimensional tetragonal Cm polymer has been studied by means of Raman spectroscopy in the spectral range of the radial intramolecular modes (200-800cm?1). A number of new Raman modes appear in the spectrum for pressures ~ 1.4 and ~ 5.0 GPa. The pressure coefficients for the majority of the phonon modes exhibit changes to lower values at P=4.0 GPa, which may be related to a structural modification of the 2D polymer to a more isotropic phase. The peculiarities observed in the Raman spectra are reversible and the material is stable in the pressure region investigated.  相似文献   

3.
Two new psychoactive substances, namely 4‐methylmethcathinone (mephedrone) and 5,6‐methylenedioxy‐2‐aminoindane (MDAI) were analysed with a novel combination of microcrystalline tests followed by Raman micro‐spectroscopy to facilitate their absolute identification. The discrimination power of the proposed combination was successfully demonstrated through the analysis of the positional isomers 2‐ and 3‐methylmethcathinone. The addition of mercury dichloride as a microcrystalline test reagent produced specific microcrystals of each tested analyte. The robustness of the method was evaluated in the presence of common cutting agents (caffeine and benzocaine) as well as on street samples. The crystal lattice structures of mephedrone, 2‐methylmethcathinone and MDAI mercury dichloride microcrystals were determined by single crystal X‐ray diffraction. This confirmed the presence of both drug and reagent together in the lattice and accounts for the distinct habit of the observed microcrystals. Raman spectra of the formed microcrystals differed from those obtained from their standard salt form by loss and/or gain of some vibrational modes. Particularly important was the appearance of the mercury chloride link to each tested drug molecule which showed as strong bands at low wavenumbers. Its presence was corroborated by its detection in the crystal lattice. It was therefore concluded that microcrystalline testing followed by Raman micro‐spectroscopy satisfies the technique combination requirement for psychoactive substances recommended by the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG) and provides a rapid and cheap analysis route. The proposed technique combination also aids the development of new microcrystalline tests as it allows for confirmation of the uniqueness of the developed microcrystals almost in‐situ rather than growing single crystals for often long periods of time needed for single crystal X‐ray diffraction analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The surface‐enhanced Raman scattering substrate of Ag–Ag nanocap arrays are prepared by depositing Ag film onto two‐dimensional (2D) polystyrene colloidal nanosphere templates. When the original colloidal arrays are used as the substrate for Ag deposition, surface‐enhanced Raman scattering (SERS) enhancements show the strong size‐dependence behaviours. When O2‐plasma etched 2D polystyrene templates are used as the substrate for Ag deposition to form nanogaps, the gap sizes between adjacent Ag nanocaps from 5 to 20 nm generate even greater SERS enhancements. When SiO2 coverage is deposited to isolate the Ag nanocaps from the neighbours, the SERS signals are enhanced more. The significant SERS effects are due to the coupling between Ag nanocaps controlled by the distance, which enhances the local electric‐field intensity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Strong in‐plane bonding (covalent) and weak van der Waals (vdW) interplanar interactions characterize a number of layered solids, as epitomized by graphite. The advent of graphene (Gr), individual atomic two‐dimensional (2D) layers, isolated from mineral graphite via micromechanical exfoliation enabled the ability to pick, place and stack of arbitrary compositions. Moreover, this discovery implicated an access to other 2D vdW solids beyond graphene and artificially stacking atomic layers forming heterostructures/superlattices. Raman spectroscopy (RS) is a fast reliable non‐destructive analytical tool and an integral part for lattice dynamical structural characterization of crystalline solids at nanoscale, revealing not only the collective atomic/molecular motions but also localized vibrations/modes and specifically used to determine the number of graphene layers and of other 2D vdW solids. We present Raman spectroscopy in first‐, second‐ and higher‐order vibrational modes involving 3 and 4 phonons (overtones and combination) and mapping of graphene (mono‐, bi‐, tri‐ and few‐) layers, semiconducting transition metal dichalcogenides (TMDs) [molybdenum disulfide (MoS2) and tungsten disulfide (WS2)] and wide bandgap hexagonal boron nitride (h‐BN) dispersed monolayers, revealing various molecular vibrations and structural quality/disorder. First‐ and higher‐order phonon modes are observed and analyzed in terms of Raman intensity (spatial inhomogeneity or thickness variation), band position (intrinsic mechanical strain) and intensity ratio (structural disorder) as a function of graphene layer (n). An empirical relation for G band position with n is corroborated. All of the higher order modes are observed to upshift almost linearly with n, betraying the underlying interlayer vdW interactions. These findings exemplify the evolution of structural parameters in layered materials in changing from 3‐ to 2‐ or low‐dimensional regime. The results are presented in view of applications of graphene by itself and in combination that help better understanding of physical and electronic properties for nano‐/optoelectronics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Raman spectroscopic technique has been used to characterize a Ru/TiO2 catalyst and to follow in situ their structural changes during the CO selective methanation reaction (S‐MET). For a better comprehension of the catalytic mechanism, the in‐situ Raman study of the catalysts activation (reduction) process, the isolated CO and CO2 methanation reactions and the effect of the composition of the reactive stream (H2O and CO2 presence) have been carried out. Raman spectroscopy evidences that the catalyst is composed by islands of TiO2–RuO2 solid solutions, constituting Ru–TiO2 interphases in the form of RuxTi1 − xO2 rutile type solid solutions. The activation procedure with H2 at 300 °C promotes the reduction of the RuO2–TiO2 islands generating Ruo–Ti3+ centers. The spectroscopic changes are in agreement with the strong increase in chemical reactivity as increasing the carbonaceous intermediates observed. The selective methanation of CO proceeds after their adsorption on these Ruo–Ti3+ active centers and subsequent C―O dissociation throughout the formation of CHx/CnHx/CnHxO/CHx―CO species. These intermediates are transformed into CH4 by a combination of hydrogenation reactions. The formation of carbonaceous species during the methanation of CO and CO2 suggests that the CO presence is required to promote the CO2 methanation. Similar carbonaceous species are detected when the selective CO methanation is carried out with water in the stream. However, the activation of the catalysts occurs at much lower temperatures, and the carbon oxidation is favored by the oxidative effect of water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Although several fundamental physico‐chemical aspects of nickel sulfides have been studied in detail, particularly for millerite (nickel(II) monosulfide), the most common nickel sulfide mineral, no satisfactory investigation of optical vibrational modes has been reported previously. In this paper, we provide a definitive assignment of the optical phonons in millerite, investigated by polarized Raman spectroscopy on an oriented single crystal. The impact of the power of the incident laser beam on the spectra has also been investigated, revealing evidence for degradation in the quality of the spectra at sufficiently high laser power. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A biochemical characterization of pathologies in biological tissue can be provided by Raman spectroscopy. Often, the raw spectrum is severely affected by fluorescence interference. We report and compare various spectra‐processing approaches required for the purification of Raman spectra from heavily fluorescence‐interfered raw spectra according to the shifted‐excitation Raman difference spectroscopy method. These approaches cover the entire spectra‐processing chain from the raw spectra to the purified Raman spectra. In detail, we compared (1) area normalization versus z‐score normalization, (2) direct reconstruction of the difference spectra versus reconstruction of zero‐centered difference spectra and (3) collective baseline correction of the reconstructed spectra versus piecewise baseline correction of the reconstructed spectra and, finally, (4) analyzed the influence of the shift of the excitation wavelength on the quality of the reconstructed spectra. Statistical analysis of the spectra showed that – in our experiments – the best results were obtained for the z‐score normalization before subtraction of the normalized spectra, followed by zero‐centering of the difference spectra before reconstruction and a piecewise baseline correction of the pure Raman spectra. With our equipment, a wavelength shift from 784 to 785 nm provided reconstructed spectra of best quality. The analyzed specimens were different tissue types of pigs, tissue from the oral cavity of humans and a model solution of dye dissolved in ethanol. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd.  相似文献   

9.
The phonons and the crystal structure of the complex hydride LiBH4 are studied on single crystals using micro‐Raman spectroscopy. The symmetry of the modes is determined by polarization‐dependent measurements at liquid helium temperature, allowing a better comparison and a more reliable assignment to the computed phonon wavenumbers. This has led to the revision of some former assignments made from Raman measurements on polycrystalline samples. In addition, a higher integration time allowed the detection of very weak lines, so that 35 out of 36 predicted Raman lines have been identified. We have also performed explorative Raman measurements on Mg(BH4)2 powders. In contrast to LiBH4, the very poor crystallinity of this material inhibits the exploitation of the full potential of Raman spectroscopy. Only broad lines are observed, which we compare to phonon wavenumbers calculated for various possible structures using density functional theory. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Raman spectra of the monocytes were recorded with laser excitation at 532, 785, 830, and 244 nm. The measurements of the Raman spectra of monocytes excited with visible, near‐infrared (NIR), and ultraviolet (UV) lasers lad to the following conclusions. (1) The Raman peak pattern of the monocytes can be easily distinguished from those of HeLa and yeast cells; (2) Positions of the Raman peaks of the dried cell are in coincidence with those of the monocytes in a culture cell media. However, the relative intensities of the peaks are changed: the peak centered around 1045 cm−1 is strongly intensified. (3) Raman spectra of the dead monocytes are similar to those of living cells with only one exception: the Raman peak centered around 1004 cm−1 associated with breathing mode of phenylalanine is strongly intensified. The Raman spectra of monocytes excited with 244‐nm UV laser were measured on cells in a cell culture medium. A peak centered at 1485 cm−1 dominates the UV Raman spectra of monocytes. The ratio I1574/I1613 for monocytes is found to be around 0.71. This number reflects the ratio between proteins and DNA content inside a cell and it is found to be twice as high as that of E. coli and 5 times as high as that of gram‐positive bacteria. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, a non‐covalent interaction of iron and metal‐free meso‐tetra (4‐sulfonatophenyl) porphines (FeTPPS and TPPS, respectively) with high‐quality single‐layer graphene is studied by Raman spectroscopy. Such a kind of graphene functionalization is promising for a development of novel optoelectronic devices and sensors. Our results show that the central metal atom of porphyrin macrocycle, iron particularly, plays an important role in the integrity of FeTPPS on graphene surface; however, the predicted Raman enhancement is not significant. The interaction of metal‐free TPPS with graphene leads to the deprotonation of TPPS molecules and higher Raman enhancement values. Moreover, initially deprotonated TPPS solutions after the adsorption onto the graphene surface demonstrate the appearance of new Raman bands and significantly enhanced Raman signals. We propose that a strong interaction between deprotonated TPPS and graphene is realized through pyrrole and desulfonated phenyl rings of closely located planar TPPS molecules on the graphene surface. The results show that both the protonation of porphyrin macrocycle and the existence of central metal atom are crucial for a formation of nanocomposites with defined electronic properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Polarised IR and Raman spectra of Na3Li(MoO4)2· 6H2O single crystal were measured. Discussion of the results is based on the factor group approach for the trigonal R 3c(C3v6) space group with Z = 2. The assignment of the observed bands was performed on the basis of their polarisation behaviour and literature data. The obtained results for the spontaneous Raman scattering were used in the analysis of the stimulated Raman spectra of the material studied—a new Raman laser crystal. The promoting modes of the stimulated effect were identified. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The oriented single‐crystal Raman spectrum of leiteite has been obtained and the spectra related to the structure of the mineral. The intensities of the observed bands vary according to orientation, allowing them to be assigned to either Ag or Bg modes. Ag bands are generally the most intense in the CAAC spectrum, followed by ACCA, CBBC, and ABBA whereas Bg bands are generally the most intense in the CBAC followed by ABCA. The CAAC and ACCA spectra are identical, as are those obtained in the CBBC and ABBA orientations. Both cross‐polarised spectra are identical. Band assignments were made with respect to bridging and non‐bridging As O bonds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
1,3‐Dithiole‐2‐thione (DTT) was synthesized and characterized using NMR, FT‐Raman, FT‐IR, UV spectroscopies. Resonance Raman spectra (RRs) were obtained with 341.5, 354.7 and 368.9 nm excitation wavelengths and density functional calculations were done to elucidate the electronic transitions and the RRs of DTT in cyclohexane solution. The RRs indicate that the Franck‐Condon region photodynamics is predominantly along the CS stretch+ H‐CC‐H scissor υ4, accompanied by the H‐CC‐H scissor υ3, S‐C‐S symmetric stretch υ6, CC stretch υ2, and overtone of the non‐totally symmetric SC‐S2 out‐of‐plane deformation 2υ11. The excited‐state dynamics and the force constant of CS stretch calculated by the RRs were discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The pressure‐induced Raman shifts of six vibrational bands of 20% and 50% trans‐polyacetylene nanoparticles in poly(vinyl‐butyral) matrix films (NPA/PVB) were studied from 0 to 45 kbar using a diamond anvil cell (DAC). The Raman shifts did not depend on the thickness of the two samples studied. Two of the vibrational bands displayed peak positions that depended on the isomeric compositions, with the 20% trans‐NPA/PVB bands being slightly blue‐shifted relative to the 50% trans‐NPA/PVB bands over the 45 kbar pressure range. The Raman bands of NPA/PVB associated with the trans form initially exhibited a relatively large shift at low pressures (P < 10 kbar) along with a drastic change in their band profile. In order to investigate the relative shielding of the vibrational modes studied, a Grüneisen analysis of the pressure‐induced shifts was conducted by estimating the parameters of the Murnaghan equation of state for solid polyacetylene (PA). Four of the six vibrational modes were found to be sensitive to compression of the interchain void space, while the other two modes were insensitive, indicating that they are relatively shielded from the compression of the sample. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The capability of anti‐Stokes/Stokes Raman spectroscopy to evaluate chemical interactions at the interface of a conducting polymer/carbon nanotubes is demonstrated. Electrochemical polymerisation of the monomer 3,4‐ethylenedioxythiophene (EDOT) on a Au support covered with a single‐walled carbon nanotube (SWNT) film immersed in a LiClO4/CH3CN solution was carried out. At the resonant optical excitation, which occurs when the energy of the exciting light coincides with the energy of an electronic transition, poly(3,4‐ethylenedioxythiophene) (PEDOT) deposited electrochemically as a thin film of nanometric thickness on a rough Au support presents an abnormally intense anti‐Stokes Raman spectrum. The additional increase in Raman intensity in the anti‐Stokes branch observed when PEDOT is deposited on SWNTs is interpreted as resulting from the excitation of plasmons in the metallic nanotubes. A covalent functionalisation of SWNTs with PEDOT both in un‐doped and doped states takes place when the electropolymerisation of EDOT, with stopping at +1.6 V versus Ag/Ag+, is performed on a SWNT film deposited on a Au plate. The presence of PEDOT covalently functionalised SWNTs is rationalised by (1) a downshift by a few wavenumbers of the polymer Raman line associated with the symmetric C C stretching mode and (2) an upshift of the radial breathing modes of SWNTs, both variations revealing an interaction between SWNTs and the conjugated polymer. Raman studies performed at different excitation wavelengths indicate that the resonant optical excitation is the key condition to observe the abnormal anti‐Stokes Raman effect. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Raman spectroscopic analysis at low (−100 °C) or high (100–200 °C) temperature is shown to be effective for detecting small amounts of H2O in CO2‐rich fluid inclusions from the deep lithosphere, which have previously been thought to be water‐free. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Ni‐doped SnO2 nanoparticles, promising for gas‐sensing applications, have been synthesized by a polymer precursor method. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) data analyses indicate the exclusive formation of nanosized particles with rutile‐type phase (tetragonal SnO2) for Ni contents below 10 mol%. The mean crystallite size shows a progressive reduction with the Ni content. Room‐temperature Raman spectra of Ni‐doped SnO2 nanoparticles show the presence of Raman active modes and modes activated by size effects. From the evolution of the A1g mode with the Ni content, a solubility limit at ∼2 mol% was estimated. Below that content, Raman results are consistent with the occurrence of solid solution (ss) and surface segregation (seg.) of Ni ions. Above ∼2 mol% Ni, the redshift of A1g mode suggests that the surface segregation of Ni ions takes place. Disorder‐activated bands were determined and their integrated intensity evolution with the Ni content suggest that the solid‐solution regime favors the increase of disorder; meanwhile, that disorder becomes weaker as the Ni content is increased. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
ZnO nanostructures have attracted great attention for possible applications in optoelectronic and spintronic devices. The electrical resistivity because of carriers can be improved by the introduction of Li ions, as Li is a possible dopant for achieving p‐type ZnO. We have carried out a comprehensive micro‐Raman scattering study of the phonons in 1% Li‐ and undoped ZnO needle crystals grown and annealed at 1073 K for 1 and 2 h under oxygen environment. Phonon mode of doped and undoped ZnO does not show any measurable shift for the doping concentration of 1%. As line width is related to point defect density, we find for both Li‐ and undoped ZnO crystals the crystallinity is improving towards the tip of the needle crystals. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A recently developed variant of spatially offset Raman spectroscopy (SORS) for the non‐invasive analysis of thin painted layers, micro‐SORS, has been applied, for the first time, to real objects of Cultural Heritage – namely painted sculptures and plasters. Thin layers of paint originating from multiple restoration processes often applied over many centuries have been analysed non‐destructively using micro‐SORS to depths inaccessible to, or unresolvable into separate layers, by conventional confocal Raman microscopy. The concept has been demonstrated on several artistic artefacts of historical significance originating from Italy and dating from the medieval to the 18th century. The technique extends the depth applicability of Raman spectroscopy and with its inherently high chemical specificity that expands the portfolio of existing non‐destructive analytical tools in Cultural Heritage permitting to avoid cross‐sectional analysis often necessitated with this type of samples with conventional Raman microscopy. Currently, the method is non‐invasive only for artworks that can be placed under Raman microscope although there is a prospect for its use in a mobile system with largely removed restrictions on sample dimensions. © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号