首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A random copolymer of ethylene oxide with CO2, namely, poly(ethylene carbonate/ethylene oxide) (P(EC/EO)), has been synthesized as a novel candidate for polymer electrolytes. Electrolyte composed of P(EC/EO) and lithium bis(fluorosulfonyl)imide has an ionic conductivity of 0.48 mS cm−1 and a Li transference number (t +) of 0.66 at 60 °C. To study ion‐conductive behavior of P(EC/EO)‐based electrolytes, the Fourier transform infrared (FT‐IR) technique is used to analyze the interactions between Li+ and functional groups of the copolymer. The carbonate groups may interact preferentially with Li+ rather than the ether groups in P(EC/EO). This study suggests that copolymerization of carbonate and flexible ether units can realize both high conductivity and t + for polymer electrolytes. High‐performance P(EC/EO) electrolyte is expected to be a candidate material for use in all‐solid‐state batteries.

  相似文献   


2.
Dissolution dynamic nuclear polarization (DNP) provides a way to tremendously improve the sensitivity of nuclear magnetic resonance experiments. Once the spins are hyperpolarized by dissolution DNP, the radicals used as polarizing agents become undesirable since their presence is an additional source of nuclear spin relaxation and their toxicity might be an issue. This study demonstrates the feasibility of preparing a hyperpolarized [1‐13C]2‐methylpropan‐2‐ol (tert‐butanol) solution free of persistent radicals by using spin‐labeled thermoresponsive hydrophilic polymer networks as polarizing agents. The hyperpolarized 13C signal can be detected for up to 5 min before the spins fully relax to their thermal equilibrium. This approach extends the applicability of spin‐labeled thermoresponsive hydrogel to the dissolution DNP field and highlights its potential as polarizing agent for preparing neat slowly relaxing contrast agents. The hydrogels are especially suited to hyperpolarize deuterated alcohols which can be used for in vivo perfusion imaging.

  相似文献   


3.
A novel strategy for the incorporation of carbon dioxide into polymers is introduced. For this purpose, the Ugi five‐component condensation (Ugi‐5CC) of an alcohol, CO2, an amine, an aldehyde, and an isocyanide is used to obtain step‐growth monomers. Polymerization via thiol‐ene reaction or polycondensation with diphenyl carbonate gives diversely substituted polyurethanes or alternating polyurethane‐polycarbonates, respectively. Furthermore, the application of 1,12‐diaminododecane and 1,6‐diisocyanohexane as bifunctional components in the Ugi‐5CC directly results in the corresponding polyamide bearing methyl carbamate side chains ( = 19 850 g mol−1). The latter polymer is further converted into the corresponding polyhydantoin in a highly straightforward fashion.

  相似文献   


4.
Here, a conjugated polymer VTTPD based on thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) and dithiophene with vinyl as linker is synthesized and characterized. Electrochemical and optical studies indicate the LUMO and HOMO energies of the polymer are −3.70 and −5.39 eV. Theoretical calculation with density functional theory suggests that H‐bonds are formed between the TPD carbonyl (O) and its neighboring vinyl (H) which benefit the planarity and π‐conjugation of the polymer backbone. Bottom contact bottom gate organic field effect transistor devices based on VTTPD are fabricated and examined in air. After annealing at 160 °C, the devices exhibit excellent performance of μh = 0.4 cm2 V−1 s−1, Ion/off = 106, Vth within −10 V to −5 V. Thin film morphologies before and after the annealing process are also investigated with XRD and AFM.

  相似文献   


5.
In this work, CO2‐breathing induced reversible activation of mechanophore within microgels is reported. The microgels are prepared through soap‐free emulsion polymerization of CO2‐switchable monomer 2‐(diethylamino)ethyl‐methacrylate, using spiropyran (SP) based mechanophore MA‐SP‐MA as cross‐linker. The microgels can be swollen by CO2 aeration. The swelling of microgels activates the SP mechanophore into merocyanine, causing distinguished color and fluorescence change. Moreover, these transitions are highly reversible, and the initial states of microgels can be easily recovered by “washing off” CO2 with N2. The present contribution represents the first example of CO2‐breathing activation of mechanophore within microgels.

  相似文献   


6.
A triptycene‐based microporous organic polymer (MOP) in which 2,6‐bis(benzimidazol‐2‐yl)pyridine (bbp) is incorporated as linkage and coordination site is designed and synthesized. Pd(II) ions are further immobilized in this MOP through the coordination interactions between Pd(II) ion and nitrogen atoms of bbp. The resulting material shows high stability and exhibits excellent heterogeneously catalytic activity for the Suzuki–Miyaura cross‐coupling reaction. Its high efficiency can be maintained after being reused for a number of cycles.

  相似文献   


7.
Rattle‐like polymer capsules with multicores in one shell are facilely fabricated by oil‐in‐water Pickering emulsion polymerization for the first time. The oil phase contains hydrophobic silica nanoparticles dispersed in polymerizable monomer, styrene, and unpolymerizable solvent, hexadecane. The multicore rattle‐like capsules are facilely produced after the polymerization of monomers in the oil droplets. The key point of this one‐pot method lies in the nucleation of hydrophobic silica and the phase separation between the resulting polystyrene and hexadecane. The influences of the contents of silica, hexadecane, cross‐linker, and stabilizer on the structure and morphology of rattle‐like capsules are systematically investigated. Moreover, functionalization of the rattle‐like capsules can be developed easily by varying hydrophobic nucleation nanoparticles in the oil phase. This work opens up a new route to fabricate multilevel capsules or spheres.

  相似文献   


8.
Injectable hydrogels have been commonly used as drug‐delivery vehicles and tried in tissue engineering. Injectable self‐healing hydrogels have great advantage over traditional injectable hydrogels because they can be injected as a liquid and then rapidly form bulk gels in situ at the target site under physiological conditions. This study develops an injectable thermosensitive self‐healing hydrogel based on chain‐extended F127 (PEO90‐PPO65‐PEO90) multi‐block copolymer (m‐F127). The rapid sol–gel transition ability under body temperature allows it to be used as injectable hydrogel and the self‐healing property allows it to withstand repeated deformation and quickly recover its mechanical properties and structure through the dynamic covalent bonds. It is hoped that the novel strategy and the fascinating properties of the hydrogel as presented here will provide new opportunities with regard to the design and practical application of injectable self‐healing hydrogels.

  相似文献   


9.
An alkyne‐functionalized ruthenium(II) bis‐terpyridine complex is directly copolymerized with phenylacetylene by alkyne polymerization. The polymer is characterized by size‐exclusion chromatography (SEC), 1H NMR spectroscopy, cyclic voltammetry (CV) measurements, and thermal analysis. The photophysical properties of the polymer are studied by UV–vis absorption spectroscopy. In addition, spectro‐electrochemical measurements are carried out. Time‐resolved luminescence lifetime decay curves show an enhanced lifetime of the metal complex attached to the conjugated polymer backbone compared with the Ru(tpy)22+ model complex.

  相似文献   


10.
Two soluble poly(phenyltriazolylcarboxylate)s (PPTCs) with high molecular weights (M w up to 26 800) are synthesized by the metal‐free 1,3‐dipolar polycycloadditions of 4,4′‐isopropylidenediphenyl diphenylpropiolate ( 1 ) and tetraphenylethene‐containing diazides ( 2 ) in dimethylformamide at 150 °C for 12 h in high yields (up to 93%). The resultant polymers are soluble in common organic solvents and are thermally stable with 5% weight loss temperatures higher than 375 °C. The PPTCs are nonemissive in solutions, but become highly luminescent upon aggregation, showing a phenomenon of aggregation‐induced emission. Their aggregates can be used as fluorescent chemosensors for high‐sensitivity detection of explosives.

  相似文献   


11.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


12.
Well‐defined ABC triblock copolymers based on two hydrophilic blocks, A and C, and a hydrophobic block B are synthesized and their self‐assembly behavior is investigated. Interestingly, at the same solvent, concentration, pH, and temperature, different shape micelles are observed, spherical and worm‐like micelles, depending on the preparation method. Specifically, spherical micelles are observed with bulk rehydration while both spherical and worm‐like micelles are observed with film rehydration.

  相似文献   


13.
Copolymers of N‐isopropylacrylamide (NIPAM) and dopamine methacrylate can establish a reversible, self‐healing 3D network in aprotic solvents based on hydrogen bonding. The reactivity and hydrogen bonding formation of catechol groups in copolymer chains are studied by UV–vis and 1H NMR spectroscopy, while reversibility from sol to gel and inverse as well as self‐healing properties are tested rheologically. The produced reversible organogel can self‐encapsulate physically interacting or chemically bonded solutes such as drugs due to thermosensitivity of the used copolymer. This system offers dual‐targeted and controlled drug delivery and release—by slowing down release kinetics by supramolecular bonding of the drug and by reducing diffusion rates due to modulus increase.

  相似文献   


14.
The CO2‐responsive and biocatalytic assembly based on conjugated polymers has been demonstrated by combining the signal amplification property of the polythiophene derivative (PTP) and the catalytic actions of carbonic anhydrase (CA). CO2 is applied as a new trigger mode to construct the smart assembly by controlling the electrostatic and hydrophobic interactions between the PTP molecules in aqueous solution, leading to the visible fluorescence changes. Importantly, the assembly transformation of PTP can be specifically and highly accelerated by CA based on the efficient catalytic activity of CA for the inter‐conversion between CO2 and HCO3, mimicking the CO2‐associated biological processes that occurred naturally in living organisms. Moreover, the PTP‐based assembly can be applied for biomimetic CO2 sequestration with fluorescence monitoring in the presence of CA and calcium.

  相似文献   


15.
In this work, a novel class of O2/N2 switchable polymers is reported, which is prepared by atom transfer radical copolymerization (ATRcoP) of commercially available 2,2,2‐trifluoroethyl methacrylate (FMA) and N,N‐dimethylaminoethyl methacrylate (DMA). The copolymer is random and contains 10 FMA units and 85 DMA units. Its aqueous solution becomes transparent with O2 bubbling and turns to turbid with N2 purging. This O2/N2‐responsive switchability between the transparent and turbid states is reversible. The FMA–DMA copolymer is thermosensitive and has a lower critical solution temperature (LCST) of 24.5 °C. O2 molecules interact with fluorinated groups of the copolymer and increase the LCST to 55 °C. Purging N2 removes O2 and returns the polymer thermosensitivity back to its initial state. The switchability occurs in the whole temperature range (24.5–55 °C).

  相似文献   


16.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


17.
A novel achiral polymer P‐1 is synthesized by the polymerization of (2,5‐bis(octyloxy)‐1,4‐phenylene)diboronic acid ( M‐1 ) with pyridine‐2,6‐diylbis(methanylylidene)bis(4‐iodoaniline) ( M‐2 ) via Pd‐catalyzed Suzuki coupling reaction. The tridentate ligand in the main chain backbone can further coordinate with Cu2+ to afford the corresponding achiral copper‐containing polymer complex P‐2 , which selectively responds to L‐/D‐histidine with significant fluorescence enhancement over other amino acids. Interestingly, P‐2 exhibits obvious CD response toward L‐ or D‐histidine compared with its model compound MC , indicating that this kind Cu(II)‐containing polymer complex sensor can be used as an effective chemosensor for enantioselective recognition of histidine enantiomers by means of CD spectroscopy.

  相似文献   


18.
A facile and efficient methodology for the formation of polymer‐fullerene networks via a light‐induced reaction is reported. The photochemical crosslinking is based on a nitrile imine‐mediated tetrazole‐ene cycloaddition reaction, which proceeds catalyst‐free under UV‐light irradiation (λmax = 320 nm) at ambient temperature. A tetrazole‐functionalized polymer (Mn = 6500 g mol−1, Ð = 1.3) and fullerene C60 are employed for the formation of the hybrid networks. The tetrazole‐functionalized polymer as well as the fullerene‐containing networks are carefully characterized by NMR spectrometry, size exclusion chromatography, infrared spectroscopy, and elemental analysis. Furthermore, thermal analysis of the fullerene networks and their precursors is carried out. The current contribution thus induces an efficient platform technology for fullerene‐based network formation.

  相似文献   


19.
A novel type of emulsion gel based on star‐polymer‐stabilized emulsions is highlighted, which contains discrete hydrophobic oil and hydrophilic aqueous solution domains. Well‐defined phenol‐functionalized core‐crosslinked star polymers are synthesized via reversible addition‐fragmentation chain transfer (RAFT)‐mediated dispersion polymerization and are used as stabilizers for oil‐in‐water emulsions. Horseradish‐peroxidase‐catalyzed polymerization of the phenol moieties in the presence of H2O2 enables rapid formation of crosslinked emulsion gels under mild conditions. The crosslinked emulsion gels exhibit enhanced mechanical strength, as well as widely tunable composition.

  相似文献   


20.
Biocompatible lipo‐histidine hybrid materials conjugated with IR820 dye show pH‐sensitivity, efficient intracellular delivery of doxorubicin (Dox), and intrinsic targetability to cancer cells. These new materials form highly uniform Dox‐loaded nanosized vesicles via a self‐assembly process showing good stability under physiological conditions. The Dox‐loaded micelles are effective for suppressing MCF‐7 tumors, as demonstrated in vitro and in vivo. The combined mechanisms of the EPR effect, active internalization, endosomal‐triggered release, and drug escape from endosomes, and a long blood circulation time, clearly prove that the IR820 lipopeptide DDS is a safe theranostic agent for imaging‐guided cancer therapy.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号