首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article describes the synthesis of bifunctional block copolymers (BCPs) of type 4 bearing orthogonally reactive backbone substituents such as 1,1,1,3,3,3‐hexafluoroisopropoxycarbonyl groups as active esters and α‐hydroxyalkylphenylketones (2‐hydroxy‐2‐methyl‐1‐phenylpropan‐1‐one) as additional photoactive moieties via reversible addition fragmentation chain transfer (RAFT) polymerization. As monomers 1,1,1,3,3,3‐hexafluoroisopropyl acrylate (HFIPA) and 2‐hydroxy‐2‐methyl‐1‐(4‐vinyl)phenylpropan‐1‐one (HAK) are used. Controlled radical polymerization provides BCPs p(HFIPA)‐b‐p(HAK) with molecular weights (Mn) ranging from 15,000 to 37,000 g mol?1 and low molecular weight distributions (PDI = 1.2–1.4). The incorporated HFIPA and HAK moieties are used for sequential chemoselective postmodification of 4 . The photoactive block of 4 can be functionalized through a nitroxide photoclick trapping reaction in the presence of functionalized nitroxides and the active ester moieties of the p(HFIPA)‐block are readily thermally amidated using various amines. Chemically modified polymers are characterized by NMR, FTIR, and GPC methods which reveal a high degree of postfunctionalization, typically >95% for both orthogonal processes. The chemically modified polymers feature a narrow molecular weight distribution. The process is successfully applied to the synthesis of a small polymer library and also to the preparation of homo and block polynitroxides using 4‐amino‐TEMPO as amine component in the transamidation reaction. The polynitroxides obtained are characterized by cyclic voltammetry, FTIR, and UV–vis spectroscopy. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 52, 258–266  相似文献   

2.
A consecutive radical addition‐coupling reaction induced by spin‐trapping agent is applied to produce degradable multisegmented polymer using α,ω‐dibromo polymer as a precursor. The macroradical generated by single electron transfer process catalyzed by Cu/PMDETA from α,ω‐dibromo polymer can be efficiently captured by 2‐methyl‐2‐nitrosopropane (MNP), which results in nitroxide radical. The in situ formed nitroxide radical immediately undergoes cross‐coupling reaction with polymeric radical, generating block polymer bridged with alkoxyamine moiety. The consecutive radical addition‐coupling reaction generates multisegmented polymer via step‐growth mechanism. Different multisegmented polymers have been prepared from α,ω‐dibromo‐PS, PtBA, and PtBA‐PS‐PtBA. The block number of multisegmented polymers can be tailored by varying the feed ratio of α,ω‐dibromo precursor to MNP. The multisegmented polymer can be degraded in the presence of hydrogen atom donor or air, and the molecular weight distribution transformed back into shape of its original precursor as it is conjugated by alkoxyamine moieties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Slow initiation relative to propagation has previously prevented photodimers of 9‐bromoanthracene or 9‐chloroanthracene, formed by [4 + 4] photocyclization reactions of the analogous 9‐haloanthracene, from being viable initiators in atom transfer radical polymerization (ATRP) reactions. The resulting polymers were found to possess high polydispersity index (PDI) values, much higher than expected number average molecular weight (Mn) values, with the reaction displaying a nonlinear relationship between monomer conversion and Mn. We report here the use of silane radical atom abstraction (SRAA) to create initiating bridgehead radicals in the presence of 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) to mediate the polymerization. When using SRAA coupled with nitroxide mediated polymerization, a dramatic decrease in PDI values was observed compared with analogous ATRP reactions, with Mn values much closer to those anticipated based on monomer‐to‐initiator ratios. Analysis using UV‐Vis spectroscopy indicated only partial anthracene labeling (~ 25%) on the polymers, consistent with thermolysis of the anthracene photodimer coupled with competition between initiation from the bridgehead photodimer radical and silane‐based radical. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6016–6022, 2008  相似文献   

4.
Well‐defined polystyrene (PSt), poly(ε‐caprolactone) (PCL) or poly(2‐methyloxazoline) (POx) based polymers containing mid‐ or end‐chain 2,5‐ or 3,5‐dibromobenzene moieties were prepared by controlled polymerization methods, such as atom transfer radical polymerization (ATRP), ring opening polymerization (ROP), or cationic ring opening polymerization (CROP). These polymers were subsequently modified by Suzuki type coupling reactions with 2‐thiophene boronic acid. The resulting polymers, containing a conjugated sequence with 2‐thienyl groups at the extremities, could be further used as macromonomers in chemical oxidative polymerization in the presence of anhydrous FeCl3. Poly(thienyl‐phenylene)s having the respective PSt or PCL chains as lateral subtituents were obtained in this way. All the starting, intermediate, or final polymers were structurally analyzed by spectroscopic methods (1H and 13C NMR, IR) and gel permeation chromatography (GPC) measurements. Thermal behavior of the macromonomers and final polymers was investigated by differential scanning calorimetry (DSC) analyses. Optical properties of the polymers were monitored by UV and fluorescence spectroscopy. The emission spectra of the polymers show a clear bathochromic shift of the λmax emission in all the cases with respect to the monomers because of the extending of the conjugation length. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 848–865, 2007.  相似文献   

5.
Stable nitronyl nitroxide radical and imino nitroxide radical were incorporated into the benzene rings of novel photochromic 7,7′‐dimethyl‐[2,2′‐bi‐1H‐indene]‐3,3′‐diethyl‐3,3′‐dihydroxy‐1,1′‐dione ( 1 ), leading to the synthesis of novel multifunctional compounds 4 and 5 . The photochromic properties, ESR spectroscopy and magnetic properties of the title compounds were investigated. Compounds 4 and 5 possess visible photochromism upon photoirradiation, and their ESR signals undergo secular broadening after photoirradiation. The magnetic susceptibility measurement shows that the antiferromagnetic interaction of 4 and 5 becomes stronger after photoirradiation. In compounds 4 and 5 there are two kinds of spin centers after photoirradiation: one is nitroxide radical, and the other is photo‐generated radicals from two indanone moieties. Our results demonstrated that the colour and magnetic properties of compounds 4 and 5 could be modulated by photoirradiation.  相似文献   

6.
Polymeric microspheres were prepared from a Merrifield resin via nitroxide‐mediated radical polymerization. Polystyrene, poly(acetoxystyrene), and poly[styrene‐b‐(methyl methacrylate‐co‐styrene)], poly(acetoxystyrene‐b‐styrene), and poly(styrene‐co‐2‐hydroxyethyl methacrylate) copolymers were demonstrated to graft onto 2,2,6,6‐tetramethyl‐1‐piperidinyloxy nitroxide bound Merrifield resins. The polymerization control was enhanced both on the surface and in solution by the addition of sacrificial nitroxide. The significant increase in the particle diameter (more than a fivefold volume increase for polystyrene brushes) showed that polymer growth was not only on the surface but also within the particles, and this diameter increase could be adjusted through changes in the molecular weight of the polymers. The microspheres were characterized by elemental analysis, IR spectroscopy, particle size analysis, and optical microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2145–2154, 2005  相似文献   

7.
The star block copolymers with polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) as side chains and hyperbranched polyglycerol (HPG) as core were synthesized by combination of atom transfer radical polymerization (ATRP) with the “atom transfer nitroxide radical coupling” (“ATNRC”) reaction. The multiarm PS with bromide end groups originated from the HPG core (HPG‐g‐(PS‐Br)n) was synthesized by ATRP first, and the heterofunctional PEO with α‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy group and ω‐hydroxyl group (TEMPO‐PEO) was prepared by anionic polymerization separately using 4‐hydroxyl‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (HTEMPO) as parents compound. Then ATNRC reaction was conducted between the TEMPO groups in PEO and bromide groups in HPG‐g‐(PS‐Br)n in the presence of CuBr and pentamethyldiethylenetriamine (PMDETA). The obtained star block copolymers and intermediates were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, fourier transform‐infrared in detail. Those results showed that the efficiency of ATNRC in the preparation of multiarm star polymers was satisfactory (>90%) even if the density of coupling cites on HPG was high. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6754–6761, 2008  相似文献   

8.
Alkoxyamines and persistent nitroxide (= aminoxyl) radicals are important regulators of nitroxide‐mediated radical polymerization. Since polymerization times decrease with the increasing homolysis rate constant of the C? ON bond homolysis between the polymer chain and the aminooxy moiety, the factors influencing the cleavage rate constant are of considerable interest. It has already been shown that the value of the homolysis rate constant kd is very sensitive to the stabilization of both released radical species. X‐Ray, EPR, and kinetic data showed that the intramolecular H‐bonding radical in the 1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl 2‐hydroxy‐1,1‐dimethylethyl nitroxide ( 3a ) (homologue of 2‐hydroxy‐1,1‐dimethylethyl 1‐phenyl‐2‐methylpropyl nitroxide ( 2a )) did not occur with the nitroxide moiety as expected but with the phosphoryl group. However, the polymerization rate of styrene (= ethenylbenzene) was significantly enhanced.  相似文献   

9.
We report the synthesis of glyco(poly(2‐oxazoline)s) functionalized with Pt(II) units for targeted tumor applications. To this end, poly(2‐ethyl‐2‐oxazoline‐block‐2‐(3‐butenyl)‐2‐oxazoline) is modified with thiol‐modified acetyl protected glucose and galactose, respectively, and terpyridine (tpy) units using thiol‐ene photoaddition. Deprotection of the sugars with sodium methoxide and treatment with Pt(COD)Cl2 applying a mild synthesis route yields polymers with monosaccharide targeting moieties and cytotoxic Pt(II) units. The polymers and intermediates are characterized by 1H nuclear magnetic resonance spectroscopy and size exclusion chromatography. Subsequently, the hemolytic activity, induction of erythrocyte aggregation as well as the cytotoxicity against mouse fibroblast L929 cells, human embryonic kidney cells HEK 293, and human hepatocytes HepG2 are studied. The comparison to cisplatin, the standard for cancer therapy, demonstrates the potential of the presented system. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2703–2714  相似文献   

10.
The synthesis of two vinyl‐terminated side‐chain liquid‐crystalline polyethers containing benzylideneaniline moieties as mesogenic cores was approached in two different ways: by chemically modifying poly(epichlorohydrin) with suitable mesogenic acids or by polymerizing analogous glycidyl ester or glycidyl ether derivatives. In all the conditions tested, the first approach led to materials in which the imine group was hydrolyzed. The second approach led to the desired polymers PG2a and PG2b , but only from the glycidyl ether derivatives and when the initiator was the system that combined polyiminophosphazene base t‐Bu‐P4 and 3,5‐di‐t‐butylphenol. These polymers were chemically characterized by IR and 1H and 13C NMR spectroscopies. The estimated degrees of polymerization ranged from 30 to 36. The liquid crystalline behavior of the synthesized polymers was studied by differential scanning calorimetry, polarized optical microscopy (POM) and X‐ray diffraction. Both polymers behave like liquid crystals and exhibited a single mesophase, which was recognized as a smectic C mesophase, probably with a bilayer arrangement, i.e., a smectic C2 mesophase. The crosslinking of both polymers was performed with dicumyl peroxide as initiator, which led to liquid crystalline thermosets. POM and X‐ray diffraction confirmed that the mesophase organization mantained on the crosslinked materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1877–1889, 2006  相似文献   

11.
We describe a chemoenzymatic strategy that can give a library of differentially fucosylated and sialylated oligosaccharides starting from a single chemically synthesized tri‐N‐acetyllactosamine derivative. The common precursor could easily be converted into 6 different hexasaccharides in which the glucosamine moieties are either acetylated (GlcNAc) or modified as a free amine (GlcNH2) or Boc (GlcNHBoc). Fucosylation of the resulting compounds by a recombinant fucosyl transferase resulted in only modification of the natural GlcNAc moieties, providing access to 6 selectively mono‐ and bis‐fucosylated oligosaccharides. Conversion of the GlcNH2 or GlcNHBoc moieties into the natural GlcNAc, followed by sialylation by sialyl transferases gave 12 differently fucosylated and sialylated compounds. The oligosaccharides were printed as a microarray that was probed by several glycan‐binding proteins, demonstrating that complex patterns of fucosylation can modulate glycan recognition.  相似文献   

12.
A versatile strategy for the preparation of end‐functional polymers and block copolymers by radical exchange reactions is described. For this purpose, first polystyrene with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl end group (PS‐TEMPO) is prepared by nitroxide‐mediated radical polymerization (NMRP). In the subsequent step, these polymers are heated to 130 °C in the presence of independently prepared TEMPO derivatives bearing hydroxyl, azide and carboxylic acid functionalities, and polymers such as poly(ethylene glycol) (TEMPO‐PEG) and poly(ε‐caprolactone) (TEMPO‐PCL). Due to the simultaneous radical generation and reversible termination of the polymer radical, TEMPO moiety on polystyrene is replaced to form the corresponding end‐functional polymers and block copolymers. The intermediates and final polymers are characterized by 1H NMR, UV, IR, and GPC measurements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2387–2395  相似文献   

13.
A polymer containing aldehyde active groups (PVB) was synthesized by atom transfer radical polymerization (ATRP), acting as a polymer precursor to graft a functional moiety via nucleophilic addition reaction. DHI (2‐(1,5‐dimethyl‐hexyl)‐6‐hydrazino‐benzo[de]isoquinoline‐1,3‐dione) and NPH (nitrophenyl hydrazine) groups, which contain naphthalimides that act as narrow traps and nitro groups that act as deep traps, were anchored onto the PVB at different ratios. A series of graft polymers were obtained and named PVB‐DHI, PVB‐DHI4‐NPH, PVB‐DHI‐NPH4, and PVB‐NPH. The chemical composition of the polymers was analyzed by 1H‐NMR spectroscopy and X‐ray photoelectron spectroscopy (XPS). Memory devices were prepared from the polymers, and IV characteristics were measured to determine the performance. By adjusting the ratio of different electron acceptors (DHI and NPH) to 4:1, ternary memory behavior was achieved. The relationship between memory behavior of PVB‐DHIxNPHy and acceptor groups as well as their conduction mechanism were studied in detail.  相似文献   

14.
Chemical Modification of Poly(epichlorohydrin) Using Montmorillonite Clay   总被引:1,自引:0,他引:1  
Cationic ring opening polymerization of epichlorohydrin (1) and acetic anhydride in the presence of Maghnite- H (Mag-H+) as a catalyst afforded, ω-diacetylated poly(epichlorohydrin) (P1) in a moderate yield and molecular weight without formation of side products and degradation. P1 was chemically modified with morpholine (2), piperidine (3) and pyrrolidine (4) into the corresponding new functional poly(epichlorohydrin)s (P2—P4) in a moderate reaction conversion . The conversion of P1 into P2—P4 was confirmed by using FTIR and NMR spectroscopy and the yield was calculated from the elemental analysis data according to the mole fraction concept. The obtained functional polymers were further characterized by thermal analysis which showed a substantial increase of the glass transition temperature (Tg). Thus, the chemical modification of α,ω-acetylated PECH using Mag-H+ offers a simple method for obtaining functional polymers. Mag-H+ is a montmorillonite sheet silicate clay exchanged with proton.  相似文献   

15.
Four different perylene side‐chain semiconductor polymers, synthesized by a combination of “click” chemistry and nitroxide‐mediated radical polymerization, are compared in terms of their optical, electrochemical, and charge transport properties. The nature of the solubilizing side chains and the chromophoric π‐conjugation system of the pendant perylene moieties are systematically changed. Two poly(perylene bisimide)s with hydrophobic (PPBI 1) and hydrophilic substituents (PPBI 2) are compared with poly(perylene diester benzimidazole) (PPDEB) and poly(perylene diester imide) (PPDEI). Optical properties are investigated by UV/vis and photoluminescence spectroscopy, and charge transport is studied by organic field effect transistor and space‐charge‐limited current measurements. Cyclic voltammetry is used to estimate highest occupied molecular orbital and lowest unoccupied molecular orbital levels. The extended π‐conjugation system of PPDEB leads to a broader absorption in the visible region when compared with PPDEI and the PPBIs. Although absorption properties of PPDEB could be considerably improved by varying the perylene core, the charge carrier mobility could be drastically improved by tuning the substituents. Very high electron mobilities of 1 × 10?2 cm2 V?1 s?1 were achieved for PPBI 2 carrying oligoethyleneglycol substituents. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1480–1486  相似文献   

16.
In this study, a novel application of radical addition‐coupling polymerization (RACP) for synthesis of hyperbranched polymers is reported. By Cu/PMDETA‐mediated RACP of 2‐methyl‐2‐nitrosopropane with trimethylolpropane tris(2‐bromopropionate) or a bromo‐ended 3‐arm PS macromonomer, two types of hyperbranched polymers with high degree of polymerization are synthesized under mild conditions, respectively. The chemical structures of the hyperbranched polymers are carefully characterized. By selective degradations of the ester groups and weak bonds of NO? C in the polymers, high degree of alternative connection of the two monomers in the synthesized polymers have been identified. Based on the experimental results, mechanism of formation of the hyperbranched polymer is proposed, which includes formation of carbon radicals from the tribromo monomer through single electron transfer, its capture by 2‐methyl‐2‐nitrosopropane that results in nitroxide radical, and cross‐coupling reaction of the nitroxide radical with other carbon radicals. Hyperbranched polymer can be formed in a step‐growth mode after multiple steps of such reactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 904–913  相似文献   

17.
An N‐alkoxyamine macroinitiator bearing a polymeric nitroxide cap was synthesized and used to investigate the effect of nitroxide size on the rate of nitroxide‐mediated radical polymerization (NMRP). This macroinitiator was prepared from asymmetric double‐headed initiator 9 , which contains both an α‐bromoester and an N‐alkoxyamine functionality. Poly(methyl methacrylate) was grown by atom transfer radical polymerization from the α‐bromoester end of this initiator, resulting in a macroinitiator (Mn = 31,000; PDI = 1.34) bearing a nitroxide cap permanently attached to a polymer chain. The polymerization kinetics of this macroinitiator in NMRP were compared with known N‐alkoxyamine initiator 1 . It was found that the rate of polymerization was unaffected by the size of the macromolecular nitroxide cap. It was confirmed that NMRP using this macroinitiator is a “living” process. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2015–2025, 2007  相似文献   

18.
A novel heterospin complex containing both NiII and nitroxide radical ligands: [Ni(salox)2(NIT4Py)2] ( 1 ) (salox = salicylaldoxime, NIT4Py = 2‐(4′‐pyridyl)‐4,4,5,5‐ tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) has been synthesized and structurally characterized. The structure consists of neutral Ni(salox)2(NIT4Py)2 moieties bridged by intermolecular hydrogen bonds, forming a one‐dimensional chain structure. Magnetic measurements show intramolecular antiferromagnetic interactions between NIT4Py and Ni2+ ion.  相似文献   

19.
2‐Phenyl‐2‐[(2,2,6,6‐tetramethylpiperidino)oxy] ethyl 2‐bromopropanoate was successfully used as an initiator in consecutive living radical polymerization routes, such as metal‐catalyzed living radical polymerization and nitroxide‐mediated free‐radical polymerization, to produce various types of acrylonitrile‐containing polymers, such as styrene–acrylonitrile, polystyrene‐b‐styrene–acrylonitrile, polystyrene‐b‐poly(n‐butyl acrylate)‐b‐polyacrylonitrile, and polystyrene‐b‐polyacrylonitrile. The kinetic data were obtained for the metal‐catalyzed living radical polymerization of styrene–acrylonitrile. All the obtained polymers were characterized with 1H NMR, gel permeation chromatography, and differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3374–3381, 2006  相似文献   

20.
The covalent attachment of [60]fullerene (C60) to two poly(vinyl chloride) (PVC) samples with different isotactic content is achieved by direct reaction in o‐dichlorobenzene (o‐DCB) solution in the presence of AIBN. The extent of fullerenation is controlled by varying the C60 feed ratio. The pendant C60‐chemically modified PVC polymers are soluble in tetrahydrofuran (THF) and have been characterized by UV–vis, NMR, FTIR, DSC, TGA, cyclic voltammetry, and SEM. The quantitative microstructural analysis after covalent attachment of the bulky C60 moiety to the PVC has been followed by 13C NMR spectroscopy. From the results it can be concluded that the modification of PVC by graft reaction through free radical reaction proceeds by a stereoselective mechanism. This conclusion has been confirmed on the basis of the increase of the glass‐transition temperature (Tg) and the thermal stability of the C60‐chemical modified PVC samples. The fullerenated PVCs obtained show good electron acceptor properties, as evidenced by electrochemical investigations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5408–5419, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号