首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of near‐infrared (NIR) organic light‐emitting diodes (OLEDs) is of growing interest. Donor–acceptor (D–A) chromophores have served as an important class of NIR materials for NIR OLED applications. However, the external quantum efficiencies (EQEs) of NIR OLEDs based on conventional D–A chromophores are typically below 1 %. Reported herein is a butterfly‐shaped D–A compound, PTZ‐BZP. A PTZ‐BZP film displayed strong NIR fluorescence with an emission peak at 700 nm, and the corresponding quantum efficiency reached 16 %. Remarkably, the EQE of the NIR OLED based on PTZ‐BZP was 1.54 %, and a low efficiency roll‐off was observed, as well as a high radiative exciton ratio of 48 %, which breaks through the limit of 25 % in conventional fluorescent OLEDs. Experimental and theoretical investigations were carried out to understand the excited‐state properties of PTZ‐BZP.  相似文献   

2.
Four novel two‐dimensional (2D) donor–acceptor (D‐A) type copolymers with different conjugated side chains, P1 , P2 , P3 , and P4 (see Fig. 1 ), are designed and synthesized for the application as donor materials in polymer solar cells (PSCs). To the best of our knowledge, there were few reports to systematically study such 2D polymers with D‐A type main chains in this area. The optical energy band gaps are about 2.0 eV for P1 – P3 and 1.67 eV for P4 . PSC devices using P1 – P4 as donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as acceptor in a weight ratio of 1:3 were fabricated and characterized to investigate the photovoltaic properties of the polymers. Under AM 1.5 G, 100 mA/cm2 illumination, a high open‐circuit voltage (Voc) of 0.9 V was recorded for P3 ‐based device due to its low HOMO level, and moderate fill factor was obtained with the best value of 58.6% for P4 ‐based device, which may mainly be the result of the high hole mobility of the polymers (up to 1.82 × 10?3 cm2/V s). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Palladium‐catalyzed direct arylation polycondensation afforded a bithiazole‐based homopolymer and donor–acceptor (D–A)‐type copolymers where the bithiazole unit served as an acceptor unit. The results of polymerization strongly depended on the solubility of the polymers; long alkyl chain substituents were required for the formation of high‐molecular‐weight polymers in high yields owing to low solubility of the bithiazole‐based polymers. X‐ray diffraction studies revealed that the obtained polymers were highly crystalline. In particular, a well‐ordered lamellar structure was observed in the D–A‐type copolymer with flexible alkyl chains after thermal annealing, presumably owing to the combination of interchain interactions between the bithiazole units and the electrostatic D–A interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1396–1402  相似文献   

4.
Designing low band‐gap‐conjugated polymers coupled with low HOMO levels attracts great attention in the field of polymer solar cells (PSCs). By using donor–acceptor (D‐A) copolymerization strategy, we designed and synthesized a series of low band‐gap copolymers with deep HOMO levels via introducing an isoindigo (IID) acceptor unit in the copolymers with the donor unit of fluorene (F) (PIID‐F), carbazole (Cz) (PIID‐Cz), thiophene (Th) (PIID‐Th), dithiophene (DTh) (PIID‐DTh), or dithienosilole (DTS) (PIID‐DTS). The HOMO level of the copolymers, measured by electrochemical cyclic voltammetry, varies from ?5.3 eV to ?5.8 eV, depending on different donor units in the copolymers. However, the LUMO levels of all the copolymers are fixed at about ?3.6 eV, which is mainly determined by IID acceptor unit due to its strong electron‐withdrawing ability. The new results will provide an effect help in designing IID based molecular structures. Among the copolymers, PIID‐DTS has a low band gap of 1.58 eV and possesses a low‐lying HOMO energy level of ?5.33 eV. The PSCs based on PIID‐DTS as donor and PC70BM as acceptor exhibited a high open‐circuit voltage (Voc) of 0.93 V and a primary power conversion efficiency of 2.45%. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3477–3485  相似文献   

5.
meso‐Tritolylcorrole‐functionalized single‐walled carbon nanotubes (TTC‐SWNT) donor‐acceptor (D–A) heterojunction nanocomposite film was fabricated on a polycarbonate membrane through filtration and non‐covalent functionalization, providing an excellent sensing platform with low‐cost, high flexibility and good gas accessibility. The TTC‐SWNTs nanocomposite displays a fast and sensitive response to nitrogen dioxide with a limit of detection of 10 ppb (S/N=3). The sensing response was significantly amplified compared to the unmodified one, which was ascribed to a D–A heterojunction at the interface between electron donor TTC and electron acceptor SWNTs. This study provides a simple route to fabricate low‐cost and highly sensitive donor‐acceptor nanocomposite‐based gas sensors.  相似文献   

6.
This work presents a joint theoretical and experimental characterisation of the structural and electronic properties of two tetrathiafulvalene (TTF)‐based acceptor–donor–acceptor triads (BQ–TTF–BQ and BTCNQ–TTF—BTCNQ; BQ is naphthoquinone and BTCNQ is benzotetracyano‐p‐quinodimethane) in their neutral and reduced states. The study is performed with the use of electrochemical, electron paramagnetic resonance (EPR), and UV/Vis/NIR spectroelectrochemical techniques guided by quantum‐chemical calculations. Emphasis is placed on the mixed‐valence properties of both triads in their radical anion states. The electrochemical and EPR results reveal that both BQ–TTF–BQ and BTCNQ–TTF–BTCNQ triads in their radical anion states behave as class‐II mixed‐valence compounds with significant electronic communication between the acceptor moieties. Density functional theory calculations (BLYP35/cc‐pVTZ), taking into account the solvent effects, predict charge‐localised species (BQ . ?–TTF–BQ and BTCNQ . ?–TTF–BTCNQ) as the most stable structures for the radical anion states of both triads. A stronger localisation is found both experimentally and theoretically for the BTCNQ–TTF–BTCNQ anion, in accordance with the more electron‐withdrawing character of the BTCNQ acceptor. CASSCF/CASPT2 calculations suggest that the low‐energy, broad absorption bands observed experimentally for the BQ–TTF–BQ and BTCNQ–TTF–BTCNQ radical anions are associated with the intervalence charge transfer (IV‐CT) electronic transition and two nearby donor‐to‐acceptor CT excitations. The study highlights the molecular efficiency of the electron‐donor TTF unit as a molecular wire connecting two acceptor redox centres.  相似文献   

7.
In this work, we report the synthesis, characterization, and application of two regioirregular naphthalenediimide (NDI)‐based alternating conjugated polymers, namely P1 and P2 , in which nitrile‐substituted moiety, 2,3‐bis(thiophen‐2‐yl)acrylonitrile and NDI moiety act as donor and acceptor unit, respectively. The two regioirregular polymers possess low‐lying LUMO energy levels of ?3.92 eV for P1 and ?3.96 eV for P2 . Both polymers possess typical dual‐band UV?Vis?NIR absorption profiles of NDI‐based polymers, and show broadened and red‐shifted absorption spectra in the solid state compared with those in solutions. Field‐effect transistor devices with top‐gate bottom‐contact configuration were used to evaluate the polymers' semiconducting properties. The two polymers exhibited promising and air‐stable ambipolar charge transport characteristics. Thin film microstructure investigations (AFM and 2D‐GIXRD) suggest both polymers formed continuous and smooth thin films, and adopted predominantly face‐on molecular packing in the solid state. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3627–3635  相似文献   

8.
Novel two‐dimensional donor–acceptor (D–A) structured conjugated polymers, P1–P4, were designed and synthesized by introducing electron‐deficient quinoxaline as core and electron‐rich alkoxyl‐phenylenevinylene in side chains and p‐phenylenevinylene, triphenylamine, or thiophene in main chain. Benefited from the D–A structures, the polymers possess low bandgaps of 1.75 eV, 1.86 eV, 1.59 eV, and 1.58 eV for P1, P2, P3, and P4, respectively, and show broad absorption band in the visible region: the shorter wavelength absorption peak at ~400 nm ascribed to the conjugated side chains and the longer wavelength absorption peak between 500 nm and 750 nm belonging to the absorption of the conjugated main chains. Especially, the absorption band of P4 film covers the whole visible range from 300 nm to 784 nm. The power conversion efficiencies of the polymer solar cells based on P1–P4 as donor and PCBM as acceptor are 0.029%, 0.14%, 0.46%, and 0.57%, respectively, under the illumination of AM 1.5, 100 mW/cm2. The polymers with the low bandgap and broad absorption band are promising photovoltaic materials. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4038–4049, 2008  相似文献   

9.
Based on a donor–acceptor framework, several conjugates have been designed and prepared in which an electron‐donor moiety, ytterbium(III) porphyrinate (YbPor), was linked through an ethynyl bridge to an electron‐acceptor moiety, boron dipyrromethene (BODIPY). Photoluminescence studies demonstrated efficient energy transfer from the BODIPY moiety to the YbPor counterpart. When conjugated with the YbPor moiety, the BODIPY moiety served as an antenna to harvest the lower‐energy visible light, subsequently transferring its energy to the YbPor counterpart, and, consequently, sensitizing the YbIII emission in the near‐infrared (NIR) region with a quantum efficiency of up to 0.73 % and a lifetime of around 40 μs. Moreover, these conjugates exhibited large two‐photon‐absorption cross‐sections that ranged from 1048–2226 GM and strong two‐photon‐induced NIR emission.  相似文献   

10.
Novel supramolecular side‐chain polymers were constructed by complexation of proton acceptor (H‐acceptor) polymers, i.e., side‐chain conjugated polymers P1–P2 containing pyridyl pendants, with low‐band‐gap proton donor (H‐donor) dyes S1–S4 (bearing terminal cyanoacrylic acids) in a proper molar ratio. Besides unique mesomorphic properties confirmed by DSC and XRD results, the H‐bonds of supramolecular side‐chain structures formed by pyridyl H‐acceptors and cyanoacrylic acid H‐donors were also confirmed by FTIR measurements. H‐donor dyes S1–S4 in solid films exhibited broad absorption peaks located in the range of 471–490 nm with optical band‐gaps of 1.99–2.14 eV. Furthermore, H‐bonded polymer complexes P1/S1–P1/S4 and P2/S1–P2/S4 exhibited broad absorption peaks in the range of 440–462 nm with optical band‐gaps of 2.11–2.25 eV. Under 100 mW/cm2 of AM 1.5 white‐light illumination, the bulk heterojunction polymer solar cell (PSC) devices containing an active layer of H‐bonded polymer complexes P1/S1–P1/S4 and P2/S1–P2/S4 (as electron donors) mixed with [6,6]‐phenyl C61 butyric acid methyl ester (i.e., PCBM, as an electron acceptor) in the weight ratio of 1:1 were investigated. The PSC device containing H‐bonded polymer complex P1/S3 mixed with PCBM (1:1 w/w) gave the best preliminary result with an overall power conversion efficiency (PCE) of 0.50%, a short‐circuit current of 3.17 mA/cm2, an open‐circuit voltage of 0.47 V, and a fill factor of 34%. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5998–6013, 2009  相似文献   

11.
A novel white‐light‐emitting organic molecule, which consists of carbazolyl‐ and phenothiazinyl‐substituted benzophenone (OPC) and exhibits aggregation‐induced emission‐delayed fluorescence (AIE‐DF) and mechanofluorochromic properties was synthesized. The CIE color coordinates of OPC were directly measured with a non‐doped powder, which presented white‐emission coordinates (0.33, 0.33) at 244 K to 252 K and (0.35, 0.35) at 298 K. The asymmetric donor–acceptor–donor′ (D‐A‐D′) type of OPC exhibits an accurate inherited relationship from dicarbazolyl‐substituted benzophenone (O2C, D‐A‐D) and diphenothiazinyl‐substituted benzophenone (O2P, D′‐A‐D′). By purposefully selecting the two parent molecules, that is, O2C (blue) and O2P (yellow), the white‐light emission of OPC can be achieved in a single molecule. This finding provides a feasible molecular strategy to design new AIE‐DF white‐light‐emitting organic molecules.  相似文献   

12.
Bright long‐wavelength‐excitable semiconducting polymer dots (LWE‐Pdots) are highly desirable for in vivo imaging and multiplexed in vitro bioassays. LWE‐Pdots have been obtained by incorporating a near‐infrared (NIR) emitter into the backbone of a polymer host to develop a binary donor–acceptor (D–A) system. However, they usually suffer from severe concentration quenching and a trade‐off between fluorescence quantum yield (Φf) and absorption cross‐section (σ). Herein, we describe a ternary component (D1/D2–A) strategy to achieve ultrabright, green laser‐excitable Pdots with narrow‐band NIR emission by introducing a BODIPY‐based assistant polymer donor as D1. The D1/D2–A Pdots possess improved Φf and σ compared to corresponding binary D2–A Pdots. Their Φf is as high as 40.2 %, one of the most efficient NIR Pdots reported. The D1/D2–A Pdots show ultrahigh single‐particle brightness, 83‐fold brighter than Qdot 705 when excited by a 532 nm laser. When injected into mice, higher contrast in vivo tumor imaging was achieved using the ternary Pdots versus the binary D–A Pdots.  相似文献   

13.
A series of donor‐π‐acceptor (D‐π‐A) conjugated copolymers ( PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT ), based on benzo[1,2‐b:4,5‐c']dithiophene‐4,8‐dione (BDD) acceptor unit with benzodithiophene (BDT) or dithienosilole (DTS) as donor unit, alkylthiophene (AT) or thieno[3,2‐b]thiophene (TT) as conjugated π‐bridge, were designed and synthesized for application as donor materials in polymer solar cells (PSCs). Effects of the donor unit and π‐bridge on the optical and electrochemical properties, hole mobilities, and photovoltaic performance of the D‐π‐A copolymers were investigated. PSCs with the polymers as donor and PC70BM as acceptor exhibit an initial power conversion efficiency (PCE) of 5.46% for PBDT‐AT , 2.62% for PDTS‐AT , 0.82% for PBDT‐TT , and 2.38% for PDTS‐TT . After methanol treatment, the PCE was increased up to 5.91%, 3.06%, 1.45%, and 2.45% for PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT , respectively, with significantly increased FF. The effects of methanol treatment on the photovoltaic performance of the PSCs can be ascribed to the increased and balanced carrier transport and the formation of better nanoscaled interpenetrating network in the active layer. The results indicate that both donor unit and π‐bridge are crucial in designing a D‐π‐A copolymer for high‐performance photovoltaic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1929–1940  相似文献   

14.
Two D–π‐A′–A regioisomers (A‐IDT‐D and D‐IDT‐A) featuring 4,4′‐di‐p‐tolyl‐4 H‐indeno[1,2‐b]‐thiophene as a π linker (π) between the diarylamino donor (D) and the pyrimidine–cyanoacrylic acid acceptor (A′–A) have been successfully synthesized and characterized as efficient sensitizers for the dye‐sensitized solar cells (DSSCs). The different arrangements of the D and A′–A blocks on the unsymmetrical indenothiophene (IDT) core render the dipole of IDT being along (A‐IDT‐D) or opposite (D‐IDT‐A) to the direction of intramolecular (donor‐to‐acceptor) charge transfer, and thus induce variations in the physical properties. The experimental observations correlated well with the theoretical analyses, clearly revealing the trade‐off between the molar extinction coefficient (ε) and the S0→S1 transition energy. As a result, a superior ε value was observed for D‐IDT‐A, whereas a bathochromic shift in the absorption occurred in A‐IDT‐D. The larger ε value of D‐IDT‐A together with its more favorable energy level relative to TiO2 led to a higher power conversion efficiency of 7.41 % for the D‐IDT‐A‐based DSSC, retaining approximately 95 % of the N719‐based DSSC efficiency. This work manifests the clear structure–property relationship for the case of donor and acceptor components being connected by an unsymmetrical π linker and provides insights for molecular engineering of organic sensitizers.  相似文献   

15.
Two n‐type conjugated D‐A copolymers, P(TVT‐NDI) and P(FVF‐NDI) with thienylene‐vinylene‐thienylene (TVT) or furanylene‐vinylene‐furanylene (FVF) as donor (D) units and naphthalene diimide (NDI) as the acceptor (A) units, were synthesized by the Stille coupling copolymerization. The two polymers possess good solubility, high thermal stability, and broad absorption bands with absorption edges at 866 nm for P(TVT‐NDI) and 886 nm for P(FVF‐NDI) . The LUMO energy levels of P(TVT‐NDI) and P(FVF‐NDI) are ?3.80 eV and ?3.76 eV respectively, so the two polymers are suitable for the application as acceptor in blending with most polymer donor in PSCs based on the energy level matching point of view. All polymer solar cells (all‐PSCs) were fabricated with P(TVT‐NDI) or P(FVF‐NDI) as acceptor and medium bandgap polymer J51 as donor for investigating the photovoltaic performance of the two n‐type conjugated polymer acceptors. And higher power conversion efficiency of 6.43% for P(TVT‐NDI) and 5.21% for P(FVF‐NDI) was obtained. The results indicate that arylenevinylenearylene–naphthalene diimide copolymer are promising polymer acceptor for all–PSCs. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1757–1764  相似文献   

16.
Thienoisoindigo (TIG) moiety has been paid numerous attentions as an excellent acceptor building block in low‐band‐gap polymers. Herein, a new TIG‐dithiophene alternating copolymer (PTIG2T) was successfully synthesized from an asymmetric TIG‐based donor–acceptor (D‐A) monomer via the self‐condensation‐type direct arylation polymerization. PTIG2T exhibited the light absorption over 1000 nm owing to the intramolecular charge transfer in the thin film state, which corresponded to an optical band gap of 1.24 eV. The HOMO and LUMO levels of PTIG2T were determined to be −5.08 and −3.60 eV, respectively. Furthermore, the organic photovoltaic (OPV) with a PTIG2T/PC61BM active layer achieved a power conversion efficiency (PCE) of 3.19%, which is one of the highest PEC achieved by OPVs with TIG‐based materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 430–436  相似文献   

17.
Two new side‐chain donor–acceptor (D‐A)‐based triphenylamine‐alt‐benzo[1,2‐b:4,5‐b′]dithiophene (TPA‐alt‐BDT) copolymers ( P1 and P2 ) with pendant benzothiadiazole (BT)/diketopyrrolopyrrole (DPP) in TPA unit were synthesized by Stille coupling polymerization. Their thermal, photophysical, electrochemical, blend film morphology and photovoltaic properties were investigated. Efficient bulk heterojunction polymer solar cells (PSCs) were obtained by solution process using both copolymers as donor materials and PC71BM as acceptor. The maximum power conversion efficiency (PCE) of 3.17% with a highest open‐circuit voltage (Voc) of 0.86V was observed in the P1 ‐based PSCs, while the maximum short‐circuit current (Jsc) of 10.77 mA cm?2 was exhibited in the P2 ‐based PSCs under the illumination of AM 1.5, 100 mW cm?2. The alternating binary donor units and pending acceptor groups played a significant role in tuning photovoltaic properties for this class of the side‐chain D–A‐based copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4103–4110  相似文献   

18.
Random donor‐acceptor (D‐A) supramolecular comb polymers were formed when hydroxyl functionalized donor and acceptor small molecules based on Oligo(phenylenevinylene) (named OPVCN‐OH ) and Perylenebisimide (named UPBI‐PDP ), respectively, were complexed with Poly(4‐vinyl pyridine) (P4VP). A series of random D‐A supramolecular comb polymers were formed by varying the ratios of UPBI‐PDP and OPVCN‐OH with P4VP. A 100% P4VP‐donor polymer complex [ P4VP(OPV1.00 )] and a 100% P4VP‐acceptor polymer complex [ P4VP(UPBI1.00 )] were also synthesized and characterized. Complex formation was confirmed by FT‐IR and 1H NMR spectroscopy. Solid state structural studies carried out using small angle X‐ray scattering and wide angle X‐ray diffraction experiments revealed altered packing of the D and A molecules in the complexes. Transmission electron microscopy images showed lamellar structures in the < 10 nm scale for the P4VP(OPV1.00 ), P4VP(UPBI1.00 ), and mixed P4VP (D‐A) complexes. The effect of the nanoscopic D‐A self‐assembly on the bulk mobility of the materials was probed using SCLC measurements. The mixed D‐A random complexes exhibited ambipolar charge transport characteristics with higher values for the average bulk hole mobility estimate. P4VP(OPV0.25 + UPBI0.75) exhibited an average hole mobility in the order of 10?2cm2 V?1 s?1 and electron mobility 10?5cmV?1 s?1. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2403–2412  相似文献   

19.
A novel D–A1–D–A2 copolymer denoted as P1 containing two electron withdrawing units based on benzothiadiazole (BT) and 9‐(2‐octyldodecyl)?8H‐pyrrolo[3,4‐b] bisthieno[2,3‐f:3′,2′‐h]quinoxaline‐8,10(9H)–dione (PTQD) units was synthesized and characterized. The resulting copolymer exhibits a broad‐absorption spectrum, relatively deep lying HOMO energy level (?5.44 eV) and narrow optical bandgap (1.50 eV). Bulk heterojunction (BHJ) polymer solar cells (PSCs) based on P1 as donor and PC71BM as acceptor with optimized donor to acceptor weight ratio of 1:2 and processed with DIO/CB solvent showed good photovoltaic performance with power conversion efficiency of 6.21% which is higher than that of the device processed without solvent additive (4.40%). The absorption and morphology investigations of the active layers indicated that structural and morphological changes were induced by the solvent additive. This higher power conversion efficiency could be mainly attributed to the absorption enhancement and improved charge transported in the active layer induced by the better nanoscale morphology of the active layer. This study demonstrated that a copolymer with two different acceptor moieties in the backbone may be promising candidate as donor copolymer for solution processed BHJ PSCs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 155–168  相似文献   

20.
Two high molecular weight linear polyesters were investigated to gain insight in how the photophysics of electron donor‐(σ‐spacer)‐electron acceptor (DσA) compounds are affected by incorporation into a polymer. They were prepared by condensation of either adipoyl or sebacoyl chloride with a diol that was functionalized with an N,N‐dialkylaniline donor, a cyclohexyl type σ‐spacer, and a 1,1‐dicyanovinyl acceptor. The solubility, which is very low, and the thermal properties of the polyesters are dictated by physical crosslinking as a consequence of interchain donor‐acceptor interactions. Charge transfer (CT) absorption and emission are observed, which involve CT between DσA moieties of different chains rather than CT processes within a single DσA unit. As a result, the photophysics of the DσA units in the polyesters differs strongly from that of similar DσA compounds in solution. Upon swelling the polymers with THF, the CT fluorescence disappears partly. Analogous polymers containing only an N,N‐dialkylaniline donor display dual fluorescence; one band reflects local emission, while the other is attributed to excimer emission. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4775–4784, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号