首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
A Luneburg lens is a fascinating gradient refractive index (GRIN) lens that can focus parallel light on a perfect point without aberration in geometrical optics. Constructing a three‐dimensional (3D) Luneburg lens at optical frequencies is a challenging task due to the difficulty of fabricating the desired GRIN materials. Here, we present the practical implementation of a 3D Luneburg lens at optical frequencies. Such a 3D Luneburg lens is designed with GRIN 3D simple cubic metamaterial structures, and fabricated with dielectric metamaterials by femtosecond laser direct writing in the commercial negative‐photoresist IP‐L. Simulated and experimental results exhibit an interesting 3D ideal focus for the infrared light. The protocol for developing the 3D Luneburg lens with ideal focus would prompt the potential applications in integrated light‐coupled devices and lab‐on‐chip integrated biological sensors based on infrared light.

  相似文献   


2.
激光超衍射加工机理与研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
张心正  夏峰  许京军 《物理学报》2017,66(14):144207-144207
随着纳米科技和微纳电子器件的发展,制造业对微纳加工技术的要求越来越高.激光加工技术是一种绿色先进制造技术,具有巨大的发展潜力,己广泛应用于不同的制造领域.为实现低成本、高效率、大面积尤其是高精度的激光微纳加工制造,研究和发展激光超衍射加工技术具有十分重要的科学意义和应用价值.本文首先阐述了基于非线性效应的远场激光直写超衍射加工技术的原理与国内外发展状况,包括激光烧蚀加工技术、激光诱导改性加工技术和多光子光聚合加工技术等;然后介绍了几种基于倏逝波的近场激光超衍射加工技术,包括扫描近场光刻技术、表面等离子激元光刻技术等新型超衍射激光近场光刻技术的机理与研究进展;最后对激光超衍射加工中存在的问题及未来发展方向进行了讨论.  相似文献   

3.
Because of long‐range order and high chemical purity, organic crystals have exhibit unique properties and attracted a lot of interest for application in solid‐state lasers. As optical gain materials, they exhibit high stimulated emission cross section and broad tunable wavelength emission as similar to their amorphous counterpart; moreover, high purity and high order give them superior properties such as low scattering trap densities, high thermal stability, as well as highly polarized emission. As electronic materials, they are potentially able to support high current densities, thus making it possible to realize current driven lasers. This paper mainly describes recent research progress in organic semiconductor laser crystals. The building molecules, crystal growth methods, as well as their stimulated emission characteristics related with crystal structures are introduced; in addition, the current state‐of‐the‐art in the field of crystal laser devices is reviewed. Furthermore, recent advances of crystal lasers at the nanoscale and single crystal light‐emitting transistors (LETs) are presented. Finally, an outlook and personal view is provided on the further developments of laser crystals and their applications.  相似文献   

4.
In the article by Hong‐Hua Fang et al. (doi: http://dx.doi.org/10.1002/lpor.201300222 ), published in Laser Photonics Rev. 8, 687–715 (2014), the names of two authors in references were wrongly spelt and citations in the text were missing. This erratum is published to correct this.  相似文献   

5.
Internal modification of transparent materials such as glass can be carried out using multiphoton absorption induced by a femtosecond (fs) laser. The fs‐laser modification followed by thermal treatment and successive chemical wet etching in a hydrofluoric (HF) acid solution forms three‐dimensional (3D) hollow microstructures embedded in photosensitive glass. This technique is a powerful method for directly fabricating 3D microfluidic structures inside a photosensitive glass microchip. We used fabricated microchips, referred to as a nanoaquarium, for dynamic observations of living microorganisms. In addition, the present technique can also be used to form microoptical components such as micromirrors and microlenses inside the photosensitive glass, since the fabricated structures have optically flat surfaces. The integration of microfluidics and microoptical components in a single glass chip yields biophotonic microchips, in other words, optofluidics, which provide high sensitivity in absorption and fluorescence measurements of small volumes of liquid samples.  相似文献   

6.
In this paper, we present experiments of extreme ultraviolet (EUV) contact lithography based on a compact laser-produced plasma (LPP) and investigated the radiation of the plasma from Cu, Fe, W targets. We measured the depth of development of a polychlorinated methylstyrene (PCMS) resist exposed through a 100 I mm−1 Cu net for times ranging from 10 to 40 minutes using different targets.  相似文献   

7.
X‐ray gas attenuators are used in high‐energy synchrotron beamlines as high‐pass filters to reduce the incident power on downstream optical elements. The absorption of the X‐ray beam ionizes and heats up the gas, creating plasma around the beam path and hence temperature and density gradients between the center and the walls of the attenuator vessel. The objective of this work is to demonstrate experimentally the generation of plasma by the X‐ray beam and to investigate its spatial distribution by measuring some of its parameters, simultaneously with the X‐ray power absorption. The gases used in this study were argon and krypton between 13 and 530 mbar. The distribution of the 2p excited states of both gases was measured using optical emission spectroscopy, and the density of argon metastable atoms in the 1s5 state was deduced using tunable laser absorption spectroscopy. The amount of power absorbed was measured using calorimetry and X‐ray transmission. The results showed a plasma confined around the X‐ray beam path, its size determined mainly by the spatial dimensions of the X‐ray beam and not by the absorbed power or the gas pressure. In addition, the X‐ray absorption showed a hot central region at a temperature varying between 400 and 1100 K, depending on the incident beam power and on the gas used. The results show that the plasma generated by the X‐ray beam plays an essential role in the X‐ray absorption. Therefore, plasma processes must be taken into account in the design and modeling of gas attenuators.  相似文献   

8.
We report a study of the determination of polymer cross‐linking, namely the degree of conversion and refractive index of the microstructures created by two‐photon polymerization (TPP). The influence of TPP processing parameters such as laser intensity and scanning velocity is investigated. The degree of conversion is analyzed via Raman microspectroscopy and the refractive index is measured with the interferometric technique employing a Michelson interferometer. Moreover, the relationship between these two properties is revealed and details are discussed. The largest refractive index change that we have obtained is of the order of 10−2. Finally, we propose and demonstrate experimentally the realization of the gradient‐index (GRIN) structure, resulting from a laser‐induced local refractive index modification due to monomer cross‐linking, i.e. degree of conversion. This work implies that the TPP technique is a valuable tool for the fabrication of GRIN microoptics for (in)homogeneous molding of light flow at the micrometer scale.

  相似文献   


9.
A system of convex-surface laser lithography with diode laser is established in this paper. Based on this system, a mathematical model of optical field distribution and lithography on the photoresist layer of convex-surface substrate with diode laser is presented. According to the lithography system and model, some numerical simulations are carried out. The simulation result shows that lithographic lines on convex-surface lithography are not symmetric about the optical axis of incident laser beam. Axis of lines at different vector radius on convex-surface substrate will offset from the wavefront normal of incident laser beam. The offset distance depends on the slopes of different equivalent slants. The simulative results of lithographic model agree well with the lithographic experimental data.  相似文献   

10.
基于直边衍射高斯激光驻波光学势阱仿真   总被引:2,自引:0,他引:2       下载免费PDF全文
张宝武  支理想  张文涛 《物理学报》2012,61(18):183201-183201
为了研究基片边缘对激光汇聚原子光学势阱的影响, 基于标量光学理论, 采用数值计算对基片衍射与否两种情况下, 高斯激光驻波场光学势阱进行了仿真, 通过三维和截面仿真图充分显示了两种情况下高斯激光光学势阱的异同. 详细研究了激光中轴线与基片表面距离、 激光束腰和反射镜之间的距离对光学势阱的影响.  相似文献   

11.
张茜  李萌  龚旗煌  李焱 《物理学报》2019,68(10):104205-104205
量子比特在同一时刻可处于所有可能状态上的叠加特性使得量子计算机具有天然的并行计算能力,在处理某些特定问题时具有超越经典计算机的明显优势.飞秒激光直写技术因其具有单步骤高效加工真三维光波导回路的能力,在制备通用型集成光量子计算机的基本单元—量子逻辑门中发挥着越来越重要的作用.本文综述了飞秒激光直写由定向耦合器构成的光量子比特逻辑门的进展.主要包括定向耦合器的功能、构成、直写和性能表征,集成波片、哈达玛门和泡利交换门等单量子比特逻辑门、受控非门和受控相位门等两量子比特逻辑门的直写加工,并对飞秒激光加工三量子比特逻辑门进行了展望.  相似文献   

12.
The demonstration of a three‐dimensional tapered mode‐selective coupler in a photonic chip is reported. This waveguide‐based, ultra‐broadband mode multiplexer was fabricated using the femtosecond laser direct‐write technique in a boro‐aluminosilicate glass chip. A three‐core coupler has been shown to enable the multiplexing of the LP01, LP and LP spatial modes of a multimode waveguide, across an extremely wide bandwidth exceeding 400 nm, with low loss, high mode extinction ratios and negligible mode crosstalk. Linear cascades of such devices on a single photonic chip have the potential to become a definitive technology in the realization of broadband mode‐division multiplexing for increasing optical fiber capacity.  相似文献   

13.
Supersized darkness in three dimensions surrounded by all light in free space is demonstrated theoretically and experimentally in the visible regime. The object staying in the darkness is similar to staying in an empty light capsule because light just bypasses it by resorting to destructive interference. A binary‐optical system is designed and fabricated based on achieving antiresolution (AR), by which electromagnetic energy flux avoids and bends smoothly around a nearly perfect darkness region. AR remains an unexplored topic hitherto, in contrast to the super‐resolution for realizing high spatial resolution. This novel scheme replies on smearing out the point spread function and thus poses less stringent limitations upon the object's size and position since the created dark (zero‐field) area reach 8 orders of magnitude larger than λ2 in cross‐sectional size. It functions very well with arbitrarily polarized beams in three dimensions, which is also frequency scalable in the whole electromagnetic spectrum.  相似文献   

14.
A commercial direct laser writing (DLW) system operating at 1070 nm was used to fabricate SiO2 optical waveguides on silicon wafers. A Ti-doped SiO2 Sol-Gel film was deposited on the SiO2/Si substrate by the dip-coating technique, based on which SiO2 optical waveguides were patterned by DLW using a Ytterbium fiber laser and followed by chemical etching. The effects of laser parameters and the preheated temperature of Sol-Gel films on the dimensions of optical waveguides were studied systematically. The differences of etching rate between laser irradiated and non-irradiated areas in Sol-Gel films preheated at various temperatures are characterized by measuring the thickness of the films. Results demonstrate that the available laser power density range for laser densification and the width of the patterned optical waveguides are influenced strongly by the preheated temperature of the Sol-Gel films. The width of the optimized optical waveguide in this work is 25 μm. The minimum propagation loss of the fabricated optical waveguides is 1.7 dB cm−1 at the wavelength of 1550 nm.  相似文献   

15.
The position of a slow atom passing through a standing-wave light field in an ultrahigh-finesse optical resonator can be measured by observing either the intensity of the light transmitted through the cavity or its phase. Apart from the periodicity of the standing wave, both techniques allow to determine the position of the particle with a resolution much better than the standard classical diffraction limit /2. Position measurements with uncertainty </20 seem to be possible with all-optical techniques.These notes were prepared to celebrate H. Walther's 60th birthday and to honour his pioneering contributions to some of the most lively fields of quantum optics  相似文献   

16.
Recent interest in the role of quantum mechanics in the primary events of photosynthetic energy transfer has led to a convergence of nonlinear optical spectroscopy, condensed matter and quantum physics on the topic of energy‐transfer dynamics in pigment‐protein complexes. The convergence of these communities has unveiled a mismatch between the background and terminology of the respective fields. To make connections, a pedagogical guide to understanding the basics of two‐dimensional spectra is provided aimed at researchers with a background in quantum mechanics and condensed matter.  相似文献   

17.
根据已公开的报道,评述了从爱因斯坦提出受激发射概念到梅曼研制出第一台激光器的大致过程.  相似文献   

18.
原子光刻中驻波场与基片距离的判定方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王建波  钱进  殷聪  石春英  雷鸣 《物理学报》2012,61(19):190601-190601
原子光刻实验中, 激光驻波场能起到原子透镜的效果, 实现原子汇聚. 激光驻波场与沉积基片间的距离对形成纳米条纹结构的质量具有重要影响. 利用高斯光束传播规律, 提出了一种能够定量判断激光驻波场与沉积基片相对位置的实验方法. 该方法通过调节装载有凸透镜和反射镜的精密位移台改变驻波场距基片的距离, 利用光电探测器接收反射光强的变化, 将位移改变量转变为接收器的电压信号. 利用驻波场激光束光斑直径值, 实现准确定位驻波场与基片的距离. 对上述实验过程进行数值模拟, 数值计算的结果和实验结果高度符合. 该方法实现了准确定位驻波场距基片的距离, 为后续深入研究驻波场和基片间距离对沉积纳米条纹结构质量的影响提供实验基础.  相似文献   

19.
Beyond the Lamb--Dicke limit, this paper investigates the squeezing properties of the trapped ion in the travelling-wave laser. It shows that the squeezing properties of the trapped ion in the travelling-wave laser are strongly affected by the sideband number $k$, the Lamb--Dicke parameter $\eta$ and the initial average phonon number.  相似文献   

20.
激光扫描声学显微镜光学系统的设计   总被引:1,自引:0,他引:1  
半导体激光器具有半导体和固体器件的许多优点:结构紧凑、效率高、价格便宜、长寿命,在许多方面优于气体激光器,因此在一些测量领域有较好的应用前景。本文基于棱镜对光的一维压缩及新型半导体激光器,对激光扫描声学显微镜的光学系统进行了新的设计,给出了相关数据及具体技术指标,实验证实其光学性能满足要求。整个光学系统具有结构紧凑、可靠性高、使用方便等特点,现已用于激光扫描声学显微镜定型设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号