共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: A diblock copolymer brush consisting of poly(methyl acrylate)‐block‐poly(pentafluoropropyl acrylate) (Si/SiO2//PMA‐b‐PPFA) was synthesized on a porous silica substrate. The brush was exposed to selective solvents, as well as thermal treatments, to induce a surface rearrangement. The rearrangement resulted in the selective loss or creation of an ultrahydrophobic layer by location of the fluoropolymer segment. This work demonstrates that surface rearrangements observed on flat surfaces can be transferred to porous substrates.
2.
Michael Koebe Markus Drechsler Jens Weber Jiayin Yuan 《Macromolecular rapid communications》2012,33(8):646-651
In this contribution, we present the highly ordered inner structure of crosslinked poly(ionic liquid) nanoparticles. Cryogenic transmission electron microscopy revealed that they resembled centric multilamellar vesicles of different geometries, depending on the exact length of the quaternizing alkyl chains. The nanoparticle size was found to be sensitive to the polymerization conditions, such as the concentrations of monomers and crosslinking agents, the anion type and the externally added salt, but fairly inert to the polymerization temperature and the amount of initiator. The size expansion of the nanoparticles in different polymerization runs was found to be either isotropic or anisotropic via their linear attachment under certain polymerization conditions. 相似文献
3.
Stimuli‐Responsive Hybrid Coatings of Polyelectrolyte Multilayers and Nano‐Patterned Polymer Brushes
Sung Yun Yang Dul‐Yi Kim Sang‐Mi Jeong Ji‐Woong Park 《Macromolecular rapid communications》2008,29(9):729-736
A new type of polymeric hybrid coating is created by layer‐by‐layer deposition of polyelectrolyte multilayers (PEM) onto nano‐patterned polymer brushes (NPB). The PEM is a hydrogen‐bonded multilayer consisting of poly(acrylic acid) and poly(acrylamide) and the NPB is derived from a surface reactive rod‐coil block copolymer, polystyrene‐block‐poly[3‐(triethoxysilyl)propylisocyanate]. The thickness of the PEM coating is optimized with respect to the height of the NPB mounds, to yield PEM/NPB hybrid coatings with unique nano‐embossed or nano‐porous structures that can be interchangeable by heating and moisture annealing. The hybrid coating is patternable by the micro‐contact printing method. The results demonstrate that the combination of surface‐bound, hydrophobic NPB layer with hydrophilic PEM films at the nanoscopic level offers a new organic hybrid coating with novel surface properties.
4.
Meta M. Bloksma Renzo M. Paulus Huub P. C. van Kuringen Friso van der Woerdt Hanneke M. L. Lambermont‐Thijs Ulrich S. Schubert Richard Hoogenboom 《Macromolecular rapid communications》2012,33(1):92-96
The monomers 2‐methyl‐2‐oxazine (MeOZI), 2‐ethyl‐2‐oxazine (EtOZI), and 2‐n‐propyl‐2‐oxazine (nPropOZI) were synthesized and polymerized via the living cationic ring‐opening polymerization (CROP) under microwave‐assisted conditions. pEtOZI and pnPropOZI were found to be thermoresponsive, exhibiting LCST behavior in water and their cloud point temperatures (TCP) are lower than for poly(2‐oxazoline)s with similar side chains. However, comparison of poly(2‐oxazine) and poly(2‐oxazoline)s isomers reveals that poly(2‐oxazine)s are more water soluble, indicating that the side chain has a stronger impact on polymer solubility than the main chain. In conclusion, variations of both the side chains and the main chains of the poly(cyclic imino ether)s resulted in a series of distinct homopolymers with tunable TCP. 相似文献
5.
Tae Young Kim Tae Hee Lee Jong Eun Kim Rajeswari M. Kasi Chong S. P. Sung Kwang S. Suh 《Journal of polymer science. Part A, Polymer chemistry》2008,46(20):6872-6879
A nonaqueous dispersion of poly(3,4‐ethylenedioxythiophene) (PEDOT) was prepared with the use of polymeric ionic liquid (PIL) as a polymerization template and phase transfer medium. A detailed investigation was performed to understand the role of PIL in the course of polymerization and phase transfer reaction. On the basis of our findings from X‐ray photoelectric spectroscopy (XPS), we propose a mechanism by which the PIL leads to the nanostructured PEDOT colloids in various organic solvents and thus facilitating smoother surface morphologies of the PEDOT‐PIL films. In addition, the enhancement of charge transport was observed for PEDOT‐PIL complex when compared with PEDOT without PIL. Raman spectroscopy indicates that there is a reduced interaction between the charge carriers on the PEDOT and the counter ions bound to PIL, thus promoting charge carrier hopping rates. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6872–6879, 2008 相似文献
6.
Masayoshi Tokuda Hideto Minami Yusuke Mizuta Tomoe Yamagami 《Macromolecular rapid communications》2012,33(13):1130-1134
Micron‐sized monodisperse poly(ionic liquid) (PIL) particles, poly([2‐(methacryloyloxy)ethyl]trimethylammonium bis(trifluoromethanesulfonyl)amide), were prepared by dispersion polymerization at 70 °C in methanol with poly(vinylpyrrolidone) as a stabilizer. The obtained particle size could be controlled by addition of ethanol to the methanol medium while maintaining narrow monodispersity. The PIL particles exhibit unique properties; they can be observed by scanning electron microscopy without platinum coating, which is generally used to avoid an electron charge. Moreover, the solubility of the PIL particles can be easily changed by changing the counter anion, similar to the process for ionic liquids. 相似文献
7.
Qiang Zhao Tim‐Patrick Fellinger Markus Antonietti Jiayin Yuan 《Macromolecular rapid communications》2012,33(13):1149-1153
Layer‐by‐layer (LbL) assembly technique is applied for the first time for the preparation of nitrogen‐doped carbon capsules. This approach uses colloid silica as template and two polymeric deposition components, that is, poly(ammonium acrylate) and a poly (ionic liquid) poly(3‐cyanomethyl‐1‐vinylimidazolium bromide), which acts as both the carbon precursor and nitrogen source. Nitrogen‐doped carbon capsules are prepared successfully by polymer wrapping, subsequent carbonization and template removal. The as‐synthesized carbon capsules contain ≈7 wt% of nitrogen and have a structured specific surface area of 423 m2 g−1. Their application as supercapacitor has been briefly introduced. This work proves that LbL assembly methodology is available for preparing carbon structures of complex morphology. 相似文献
8.
Stimuli‐responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi‐stimuli‐responsive polymer materials have been designed and developed in recent years. Compared with conventional single‐ or dual‐stimuli‐based polymer materials, multi‐stimuli‐responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi‐stimuli‐responsive polymer materials, namely, multi‐stimuli‐responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi‐stimuli‐responsive films (polymer brushes, layer‐by‐layer polymer films, and porous membranes), and multi‐stimuli‐responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi‐stimuli‐responsive particles, films, and bulk gels are comprehensively discussed here. 相似文献
9.
Cecilia C. Hall Cecelia A. Rivera Timothy P. Lodge 《Journal of polymer science. Part A, Polymer chemistry》2019,57(3):281-287
A reflection cloud point technique allows for rapid screening of light‐dependent phase separation temperatures of thermo‐ and photoresponsive polymer/ionic liquid solutions as a function of sample thickness, molecular weight, and copolymer composition. We systematically investigate the lower critical solution temperature (LCST) phase behavior of poly(benzyl methacrylate‐stat‐(4‐phenylazophenyl methacrylate)). Under UV light, the photoresponsive azobenzene‐based repeat unit becomes more polar as the cis form dominates, increasing its solubility in the ionic liquids 1‐ethyl‐3‐methyl imidazolium and 1‐butyl‐3‐methyl imidazolium bis(trifluoromethanesulfonyl)imide. This light‐dependent polarity change leads to two phase separation temperatures, depending on the illumination wavelength. Under visible light, which drives the azobenzene moiety into the trans ground state, the LCST shows no sample thickness dependence. Under UV light, however, sample thickness plays a significant role. Samples of around 1 mm thickness show no apparent difference under UV and visible light, whereas thinner samples show an increasing difference between the phase separation temperatures with decreasing sample thickness. Neither phase separation temperature exhibits a significant dependence on molecular weight. Increasing the photoresponsive monomer content did not lead to an increase in the difference between the phase separation temperatures at fixed thickness, due to a concomitant increase in UV light absorbed at the sample surface. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 281–287 相似文献
10.
Xiao‐Qiao Wang Shengyang Yang Cai‐Feng Wang Li Chen Su Chen 《Macromolecular rapid communications》2016,37(9):759-768
In this work, multifunctional hydrogels with vivid color change and shrinking–swelling response to temperature, ion strength, and alternating magnetic field are fabricated via magnetic assembly. The hydrogels show gradual shift colors from yellowish green to green, cyan, blue, purple, and even reddish violet in response to temperature or ion strength. In the response process, the whole color modulation process is fully reversible and transferable along with a relative short response time. Especially, the magnetism and porous structure of the hybrid hydrogel enable it to be a potential carrier for hydrophobic molecules. Taking advantage of the magnetocaloric responsiveness, the dyed oil loaded hydrogel exhibits a controllable release behavior in each reversible shrinking–swelling cycle under an alternating magnetic field. This multi‐responsive hydrogel can hold promise for practical engineering applications, including sensors, displays, and controlled release.
11.
12.
Using molecular dynamics simulations with an OPLS force field, the lower critical solution temperature (LCST) of single‐ and multiple‐chain PNIPAM solutions in water is investigated. The sample containing ten polymer chains shows a sudden drop in size and volume at 305 K. Such an effect is absent in the single‐chain system. Large fluctuations of the physical properties of a short single‐chain prevent any clear detection of the LCST for the chosen model system, at least on the time scale of 200 ns. The results provide evidence that a critical number of PNIPAM monomer units must be present in the simulated system before MD simulations are capable to detect conformational changes unambiguously.
13.
TaeYoung Kim Minwon Suh Soon Jae Kwon Tae Hee Lee Jong Eun Kim You Jong Lee Joo Hyung Kim MunPyo Hong Kwang S. Suh 《Macromolecular rapid communications》2009,30(17):1477-1482
We report that poly(3,4‐ethylenedioxythiophene) derived from poly(ionic liquid) (PEDOT:PIL) constitutes a unique polymeric hole‐injecting material capable of improving device lifetime in organic light‐emitting diodes (OLEDs). Imidazolium‐based poly(ionic liquid)s were engineered to impart non‐acidic and non‐aqueous properties to PEDOT without compromising any other properties of PEDOT. A fluorescent OLED was fabricated using PEDOT:PIL as a hole‐injection layer and subjected to a performance evaluation test. In comparison with a control device using a conventional PEDOT‐based material, the device with PEDOT:PIL was found to achieve a significant improvement in terms of device lifetime. This improvement was attributed to a lower indium content in the PEDOT:PIL layer, which can be also interpreted as the effective protection characteristics of PEDOT:PIL for indium extraction from the electrodes.
14.
Karoline Tuber Annett Zimathies Jiayin Yuan 《Macromolecular rapid communications》2015,36(24):2176-2180
Porous polymer membranes made via electrostatic complexation are fabricated from a water‐soluble poly(ionic liquid) (PIL) for the first time. The porous structure is formed as a consequence of simultaneous phase separation of the PIL and ionic complexation with an acid, which occurred in a basic solution of a nonsolvent for the PIL. These membranes have a stimuli‐responsive porosity, with open and closed pores in isopropanol and in water, respectively. This property is quantitatively demonstrated in filtration experiments, where water is passing much slower through the membranes than isopropanol.
15.
《Macromolecular rapid communications》2017,38(16)
Porous polyelectrolyte membranes stable in a highly ionic environment are obtained by covalent crosslinking of an imidazolium‐based poly(ionic liquid). The crosslinking reaction involves the UV light‐induced thiol–ene (click) chemistry, and the phase separation, occurring during the crosslinking step, generates a fully interconnected porous structure in the membrane. The porosity is on the order of the micrometer scale and the membrane shows a gradient of pore size across the membrane cross‐section. The membrane can separate polystyrene latex particles of different size and undergoes actuation in contact with acetone due to the asymmetric porous structure. 相似文献
16.
《应用有机金属化学》2017,31(12)
Gold nanoparticles supported on poly ionic‐liquid magnetic nanoparticles (MNP@PIL@Au) were synthesized by reduction of HAuCl4 with sodium borohydride. The synthesized catalyst was characterized using by AAS, TEM, FT‐IR, EDS, TGA and XRD techniques. The performance of the synthesized catalyst was investigated in the reduction of nitroarenes with NaBH4. The reaction was carried out for various nitroarenes in water and mild conditions with high yields. The catalyst selectivity for the reduction of nitro group in the presences of other functional groups such as halides and alkynes was fairly well. The recycling of the catalyst was done 8 times without any significant loss of its catalytic activity. 相似文献
17.
Poly(ionic liquid)‐Mediated Morphogenesis of Bismuth Sulfide with a Tunable Band Gap and Enhanced Electrocatalytic Properties 下载免费PDF全文
Prof. Dr. Min‐Rui Gao Prof. Dr. Shu‐Hong Yu Dr. Jiayin Yuan Weiyi Zhang Prof. Dr. Markus Antonietti 《Angewandte Chemie (International ed. in English)》2016,55(41):12812-12816
Conventional polymer additives have a substantial impact on synthetic inorganic chemistry, but critical shortcomings remain; for example, low solubility in organic solvents and potential thermodynamic aggregates. Poly(ionic liquid)s have now been used as efficient additives that enable a high level control of bismuth sulfide crystals with significant size and morphological diversities. The bismuth sulfides exhibit tunable band structure as a result of the quantum size effects. Moreover, poly(ionic liquid)s are able to couple with as‐synthesized bismuth sulfides chemically and endow a modified surface electronic structure, which allows resultant products to possess outstanding electrocatalytic performance for water oxidation, although its commercial counterpart is catalytically inert. 相似文献
18.
Javier Illescas Mariano Casu Valeria Alzari Daniele Nuvoli Mariano Andrea Scorciapino Roberta Sanna Vanna Sanna Alberto Mariani 《Journal of polymer science. Part A, Polymer chemistry》2014,52(24):3521-3532
A new series of linear and crosslinked copolymers, obtained from 3‐octyl‐1‐vinylimidazolium bromide (VImBr) and N‐isopropylacrylamide (NIPAAm), were prepared by radical polymerization. Namely, VImBr was synthesized from 1‐bromooctane and an ionic liquid such as 1‐vinylimidazole. NIPAAm was used because it gives raise to well known thermoresponsive (co‐)polymers. The copolymers were thoroughly characterized by means of 1H NMR and 13C NMR spectroscopies. Besides, differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy were also used. Moreover, the swelling behavior and the thermoresponsive properties of the corresponding hydrogels were studied. It was found that the VImBr incorporation into the copolymers does have a dramatic influence on both the thermal properties of the dried materials and the lower critical solution temperature of the corresponding hydrogels. In detail, the glass transition temperature was dependent on the monomer ratios, and ranged from 5 to 155 °C. Analogously, the lower critical solution temperature of the resulting hydrogels ranged from less than 10 up to 38 °C, thus including the physiological temperature. NMR spectroscopies, which were performed on the linear polymers, indicated that the monomers exhibit an alternating tendency resulting in a microstructure in which blocks are not present, at least when the two monomers are in equimolar amounts. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3521–3532 相似文献
19.
Ali Pourjavadi Seyed Hassan HosseiniSeyyed Alireza AghayeeMeibody Seyedeh Talieh Hosseini 《Comptes Rendus Chimie》2013,16(10):906-911
A novel poly(ionic liquid) (PIL) coated magnetic nanoparticle was synthesized by distillation-precipitation-polymerization of 1-vinyl-3- ethyl imidazolium in the presence of surface modified magnetic nanoparticles. The resulting catalyst was used as magnetic heterogeneous base catalyst for the synthesis of 4H-benzo[b]pyrans in water. The separation of the catalyst from the reaction mixture was readily achieved by simple magnetic decantation and the catalyst could be easily recycled without appreciable loss of catalytic activity. Because of polymer layers coated the surface of the magnetic nanoparticles, the catalyst has a high loading level of ionic liquid. 相似文献
20.
Jaeyoen Jung Ki Woo Kim Kyunga Na Marian Kaholek Stefan Zauscher Jinho Hyun 《Macromolecular rapid communications》2006,27(10):776-780
Summary: This paper demonstrates a new, reliable, and simple method for fabricating micropatterned nanoparticle arrays that can serve as templates for the surface‐initiated polymerization of polymer brushes. As a proof of concept, we micropatterned gold nanoparticles (Au‐NPs, ≈10 nm) onto glass, silicon, polystyrene, and gold surfaces by a simple three‐step process: (1) microcontact printing of soluble polymer, (2) incubation with a solution of Au‐NPs, and (3) lift‐off of the template in a mixture of ethanol and deionized water. 40 µm wide features were successfully fabricated without any significant defects or nonspecific adsorption on the background. To demonstrate the utility of these Au‐NP templates, we subsequently polymerized N‐isopropylacrylamide by surface‐initiated polymerization, using a surface‐bound initiator.