首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
导电聚合物   总被引:23,自引:0,他引:23  
李永舫 《化学进展》2002,14(3):207-211
导电聚合物是20世纪70年代发展起来的一个研究领域,因其诱人的应用前景受到广泛重视,本文介绍了导电聚合物的发展和发展历史,综述了导电聚合物的结构和掺杂特征,制造方法,电导和电化学特性及其本征态共轭聚合物的光电特性,对导电聚合物当前的研究热点和应用前景进行了讨论。  相似文献   

2.
宿丹  第凤  邢季  车剑飞  肖迎红 《化学进展》2014,26(12):1962-1976
导电聚合物(conducting polymers,CPs)是一类与金属具有相似的电、磁和光学特性的有机聚合物,电刺激会引起其氧化-还原状态的改变,从而导致CPs的电荷量、掺杂水平、导电性以及体积发生变化.利用CPs的这些特性,可将其用于药物、蛋白质以及基因等的传递和可控释放.通过对CPs基体进行化学物理修饰,可以扩大CPs基体的载药品种、提高载药量以及优化药物控释手段.本文简要介绍了CPs的性能和制备方法,对CPs基药物传递体系的药物担载和释放机理进行了详细的讨论,并归纳总结了近年来国内外以CPs为基体的药物传递体系的研究进展,最后对CPs基药物传递体系所面临的问题和未来发展进行了总结和展望.  相似文献   

3.
Summary: Light-driven devices based on reversible change of carrier mobility in semiconducting polymers were investigated. The mobility was altered using a photochromic spiropyran capable of a reversible change of permanent dipole moment and ionization potential. While the latter attribute may result in formation of chemical traps and is more important for matrices with similar ionization potential such as PVK, the former phenomenon results in formation of polar traps and is more pronounced in the case of lower-band-gap materials.  相似文献   

4.
本文以聚乙炔类导电高分子为重点简要地综述了可溶性导电高分子的合成与研究现状。  相似文献   

5.
This article summarizes recent progress in the post‐functionalization of conjugated polymers by electrochemical methods. These electrochemical polymer reactions typically proceed via electrochemical doping of a conjugated polymer film, followed by chemical transformation. Examples include the quantitative oxidative fluorination of polyfluorenes and oxidative halogenation of polythiophenes, as well as the reductive hydrogenation of polyfluorenones. The degree of functionalization, otherwise known as the reaction ratio, can be controlled by varying the charge passed through the polymer, allowing the optoelectronic properties of the conjugated polymers to be tailored. Wireless bipolar electrodes with an in‐plane potential distribution are also useful with regard to the electrochemical doping and reaction of conjugated polymers and allow the synthesis of films exhibiting composition gradients. Such bipolar electrochemistry can induce multiple reaction sites during electrochemical polymer reactions.

  相似文献   


6.
导电聚合物的结构和性能表征方法   总被引:4,自引:0,他引:4  
综述了导电聚合物的结构与性能表征的几种经典和现代的仪器方法,指出了这些方法的特点及用途。  相似文献   

7.
董彬  徐景坤  郑利强 《化学进展》2009,21(9):1792-1799
自20世纪70年代导电聚合物发现以来,聚吡咯、聚苯胺、聚噻吩、聚(3,4-乙撑二氧噻吩)、聚对苯及其衍生物等,以其特殊的电子、电化学、光学性质以及巨大应用潜力受到广泛关注。离子液体是一类在室温或接近室温时呈液态的离子化合物,作为一类环境友好的新型绿色溶剂,具有很多独特的物理化学性质。本文综述了离子液体作为反应介质、支持电解质、测试介质以及离子液体参与形成的聚集体,在导电聚合物的电化学合成以及电化学性质测试中的研究进展,并展望了发展趋势。  相似文献   

8.
涂亮亮  贾春阳 《化学进展》2010,22(8):1610-1618
导电聚合物(聚苯胺,聚吡咯,聚噻吩)作为超级电容器电极材料的研究引起了人们广泛的兴趣,该类材料制备的超级电容器具有成本低、容量高、充放电时间短、环境友好和安全性高等优点。本文综述了近年来基于导电聚合物及其与无机材料(碳材料/金属氧化物材料)复合所得电极材料在超级电容器中的应用进展,指出具有纳米结构导电聚合物材料及导电聚合物与无机纳米材料的复合是超级电容器电极材料研究的重要发展方向。  相似文献   

9.
10.
This Feature Article provides an overview of the distinctive nanostructures that aniline oligomers form and the applications of these oligomers for shaping the nanoscale morphologies and chirality of conducting polymers. We focus on the synthetic methods for achieving such goals and highlight the underlying mechanisms. The clear advantages of each method and their possible drawbacks are discussed. Assembly and applications of these novel organic (semi)conducting nanomaterials are also outlined. We conclude this article with our perspective on the main challenges, new opportunities, and future directions for this nascent yet vibrant field of research.

  相似文献   


11.
Three isostructural lanthanide‐based two‐ dimensional coordination polymers (CPs) {[Ln2(L)3(H2O)2]n ? 2n CH3OH) ? 2n H2O} (Ln=Gd3+ ( 1 ), Tb3+ ( 2 ), Dy3+ ( 3 ); H2L=cyclobutane‐1,1‐dicarboxylic acid) were synthesized by using a low molecular weight dicarboxylate ligand and characterized. Single‐crystal structure analysis showed that in complexes 1 – 3 lanthanide centers are connected by μ3‐bridging cyclobutanedicarboxylate ligands along the c axis to form a rod‐shaped infinite 1D coordination chain, which is further linked with nearby chains by μ4‐connected cyclobutanedicarboxylate ligands to form 2D CPs in the bc plane. Viewing the packing of the complexes down the b axis reveals that the lattice methanol molecules are located in the interlayer space between the adjacent 2D layers and form H‐bonds with lattice and coordinated water molecules to form 1D chains. Magnetic properties of complexes 1 – 3 were thoroughly investigated. Complex 1 exhibits dominant ferromagnetic interaction between two nearby gadolinium centers and also acts as a cryogenic magnetic refrigerant having a significant magnetic entropy change of ?ΔSm=32.8 J kg?1 K?1 for ΔH=7 T at 4 K (calculated from isothermal magnetization data). Complex 3 shows slow relaxation of magnetization below 10 K. Impedance analysis revealed that the complexes show humidity‐dependent proton conductivity (σ=1.5×10?5 S cm?1 for 1 , σ=2.07×10?4 S cm?1 for 2 , and σ=1.1×10?3 S cm?1 for 3 ) at elevated temperature (>75 °C). They retain the conductivity for up to 10 h at high temperature and high humidity. Furthermore, the proton conductivity results were correlated with the number of water molecules from the water‐vapor adsorption measurements. Water‐vapor adsorption studies showed hysteretic and two‐step water vapor adsorption (182000 μL g?1 for 1 , 184000 μL g?1 for 2 , and 1874000 μL g?1 for 3 ) in the experimental pressure range. Simulation of water‐vapor adsorption by the Monte Carlo method (for 1 ) confirmed the high density of adsorbed water molecules, preferentially in the interlayer space between the 2D layers.  相似文献   

12.
Summary: Poly(2-bromo-5-hexyloxy-p-phenylenevinylene), BHPPV, was electrochemically synthesized in 81% yield. The polymer presented high solubility in organic solvents, in spite of its relatively high molar weight ( = 80 000), and showed to be thermally resistant up to 130 °C. Gas sensors made from thin films of CSA doped BHPPV, deposited on interdigitated electrodes, responded to five different solvents. Plots of relative response versus relative recovery showed good discrimination of the five solvents.  相似文献   

13.
Conducting polymer hydrogels that are capable of contacting with electrolytes at the molecular level, represent an important electrode material. However, the fabrication of self-standing hydrogels merely composed of conducting polymers is still challenging owing to the absence of reliable methods. Herein, a novel and facile macromolecular interaction assisted route is reported to fabricate self-standing hydrogels consisting of polyaniline (PANi: providing high electrochemical activity) and poly(3,4-ethylenedioxythiophene) (PEDOT: enabling high electronic conductivity). Owing to the synergistic effect between them, the self-standing hydrogels possess good mechanical properties and electronic/electrochemical performances, making them an excellent potential electrode for solid-state energy storage devices. A proof-of-concept all-hydrogel-state supercapacitor is fabricated, which exhibits a high areal capacitance of 808.2 mF cm−2, and a high energy density of 0.63 mWh cm−3 at high power density of 28.42 mW cm−3, superior to many recently reported conducting polymer hydrogels based supercapacitors. This study demonstrates a novel promising strategy to fabricate self-standing conducting polymer hydrogels.  相似文献   

14.
Conducting electroactive polymers (CPs) are materials discovered just over 20 years ago which have aroused considerable interest on account of their electronic conducting properties and unique chemical and biochemical properties. Consequently, they have numerous (bio)analytical and technological applications. CPs are easily synthesized and deposited onto the conductive surface of a given substrate from monomer solutions by electrochemical polymerization with precise electrochemical control of their formation rate and thickness. Coating electrodes with CPs under mild conditions opens up enormous possibilities for the immobilization of biomolecules and bioaffinity or biorecognizing reagents, the improvement of their electrocatalytic properties, rapid electron transfer and direct communication to produce a range of analytical signals and new analytical applications. Co-immobilization of other molecules (enzymatic co-factors or charge-transfer mediators) by entrapment within electropolymerized films or by covalent binding on these films permits straightforward fabrication of reagentless biosensors. The characteristics of CPs and their uses, mainly in amperometric biosensors, are reviewed. The most recent applications and lines of research related to CP films are summarized in the different sections of the paper, and probable future trends are discussed.  相似文献   

15.
Summary: A step‐by‐step ‘all‐electrochemical’ approach has been presented to develop a multilayer structure of conducting polymers for gas sensors. The integrated structure includes a sensitive layer (polyaniline, PANI) and a conductive bridge consisting of poly(3,4‐ethylenedioxythiophene) (PEDOT). Good sensitivity, stability, and response of the multilayer material to gaseous HCl indicate a possible application of conductive polymers to provide a binding of sensitive elements in sensors or other fields.

The conducting multilayer material, Au/pATP/PANI/PEDOT, was synthesized electrochemically.  相似文献   


16.
导电聚合物是由一些具有共轭π键的聚合物经化学或电化学掺杂后形成的导电率可从绝缘体延伸到导体范围的一类高分子材料。其中噻吩及其衍生物具有导电率高、环境稳定性好、成膜性好、禁带宽度小等特点,是用做光伏电池的理想材料。相继报道的有聚3-甲噻吩[1]、聚3-己基噻吩[2],聚(3-十一烷基-2,2’-并噻吩)[3]等。对于聚噻吩的光电化学性质的研究,在国际上很少见报道,国内尚未见报道,本文对聚噻吩(PTh)的光电化学性质进行了研究。1实验部分1.1仪器与试剂光电化学实验采用带石英窗口的三电极电解池,工作电极为ITO/PTh膜电极,参比电极为饱和…  相似文献   

17.
聚(N-异丙基丙烯酰胺)(PNIPAAm)及其共聚物,在水溶液中表现出最低临界溶液温度(LCST),在LCST附近会发生可逆相转变。利用这种特性,可将热敏性高分子材料应用于生物医学工程、免疫分析、催化、分离提纯等领域。主要综述了热敏性PNIPAAm类高分子材料,在这些领域中的应用情况。  相似文献   

18.
Summary: Polypyrrole (PPy), polyaniline (PANI), and poly(ethylenedioxythiophene) (PEDOT) aqueous dispersions were prepared by polymerizing the corresponding monomer in the presence of a polymeric ionic liquid (PIL), poly(1‐vinyl‐3‐ethylimidazolium bromide). By addition of bispentafluoroethanesulfonimide lithium salt, the PIL stabilizer becomes hydrophobic and precipitates in water and traps the conducting polymer microparticles inside. The dispersion of the recovered powders in organic solvents leads to organic conducting dispersions. After casting the organic dispersions, hydrophobic films with electrical conductivity values as high as 0.1 S · cm−1 were obtained.

A new synthetic route to new organic dispersions.  相似文献   


19.
Regioregular poly(3‐hexylthiophene) has been successfully incorporated into a novel amphiphilic block copolymer. The amphiphilic nature of poly(3‐hexylthiophene)‐block‐poly(acrylic acid) has been investigated using spectroscopic methods and has yielded solvatochromic behavior in several solvents of varying polarity. Evidence suggests that a supramolecular, long range ordering of block copolymer occurs in polar solvents, resulting in the formation of aggregates. Despite relatively large amounts of non‐conductive blocks, the poly(3‐hexylthiophene) diblock copolymer yields a high conductivity of 1 S · cm−1, and atomic force microscopy shows the formation of a highly organized nanofibrilar morphology in the solid state.

  相似文献   


20.
Conducting semi‐interpenetrating network composites with low conductivity percolation threshold were synthesized from waterborne conducting polyaniline (cPAn) and melamine‐urea resin. A perfect network of cPAn in the composite was observed by means of TEM (see Figure). The conductivity stability of cPAn in water was improved by confining the chain mobility of cPAn via in‐situ crosslinking of melamine‐urea resin. Cyclic voltammetry of the composites reveals electrochemical activities and reversibilities similarly to those of pure cPAn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号