首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By anchoring alkynylplatinum(II) terpyridine molecular tweezer/pyrene recognition motif on the chain‐ends of telechelic polycaprolactone, high‐molecular‐weight supramolecular polymers have been successfully constructed via noncovalent chain extension, which demonstrate fascinating rheological and thermal properties. Moreover, the resulting assemblies exhibit interesting temperature‐ and solvent‐responsive behaviors, which are promising for the development of adaptive functional materials.

  相似文献   


2.
The application of cyclodextrin (CD)‐based host–guest interactions towards the fabrication of functional supramolecular assemblies and hydrogels is of particular interest in the field of biomedicine. However, as of late they have found new applications as advanced functional materials (e.g., actuators and self‐healing materials), which have renewed interest across a wide range of fields. Advanced supramolecular materials synthesized using this noncovalent interaction, exhibit specificity and reversibility, which can be used to impart reversible cross‐linking, specific binding sites, and functionality. In this review, various functional CD‐based supramolecular assemblies and hydrogels will be outlined with the focus on recent advances. In addition, an outlook will be provided on the direction of this rapidly developing field.

  相似文献   


3.
A simple and versatile method is developed for preparing anisotropic polymer particles by pressing polymer microspheres at elevated temperatures. Polystyrene (PS) microspheres are used to demonstrate this approach. Depending on the mechanical deformation and wetting of the polymers on the substrates, polymer structures with special shapes such as barrel‐like or dumbbell‐like shapes can be prepared. The morphology of polymer structures can be controlled by the experimental parameters such as the pressing pressure, the pressing temperature, and the pressing time. The wetting of the polymers on the substrates dominates when the samples are annealing at higher temperatures for longer times.

  相似文献   


4.
A facile and versatile approach to constructing colorless surface coatings based on green tea polyphenols is reported, which can further act as a photoinitiating layer to initiate radical polymerization. These colorless green tea polyphenol coatings are capable of successfully photografting polymer brushes, and the resulting polymer brush patterns show spatial shape adjustability by masked UV irradiation. Both surface modifications and photografted polymer brushes do not alter the original color of the substrates. This method could be promising for the development of surface modifications.

  相似文献   


5.
Rewritable optical storage has been obtained in a spiropyran doped liquid crystal polymer films. Pictures can be recorded on films upon irradiation with UV light passing through a grayscale mask and they can be rapidly erased using visible light. Films present improved photosensitivity and optical contrast, good resistance to photofatigue, and high spatial resolution. These photochromic films work as a multifunctional, dynamic photosensitive material with a real‐time image recording feature.

  相似文献   


6.
Synthesis of a cyclodextrin (CD) polyrotaxane is achieved for the first time by simultaneous free radical polymerization of isoprene, threading by CD, and stoppering by copolymerization of styrene. This reaction is performed in an eco‐friendly manner in an aqueous medium similar to classical emulsion polymerization. Threaded CD rings of the polyrotaxane are cross‐linked by hexamethylene diisocyanate, leading to highly elastic slide‐ring gels.

  相似文献   


7.
Improving thermal stability of TEMPO‐oxidized cellulose nanofibrils (TOCNs) is a major challenge for the development and preparation of new nanocomposites. However, thermal degradation of TOCNs occurs at 220 °C. The present study reports a simple way to improve thermal stability of TOCNs by the heat‐induced conversion of ionic bonds to amide bonds. Coupling amine‐terminated polyethylene glycol to the TOCNs is performed through ionic bond formation. Films are produced from the dispersions by the casting method. Infrared spectroscopy and thermogravimetric analysis confirm conversion of ionic bonds to amide bonds for the modified TOCN samples after heating. As a result, improvement of TOCNs' thermal stability by up to 90 °C is successfully achieved.

  相似文献   


8.
Hierarchical semicrystalline block copolymer nanoparticles are produced in a segmented gas‐liquid microfluidic reactor with top‐down control of multiscale structural features, including nanoparticle morphologies, sizes, and internal crystallinities. Control of multiscale structure on disparate length scales by a single control variable (flow rate) enables tailoring of drug delivery nanoparticle function including release rates.

  相似文献   


9.
Using the third‐generation Grubbs catalyst, the living ring‐opening metathesis polymerization of ferrocene/cobalticenium copolymers is conducted with theoretical numbers of 25 monomer units for each block, and their redox and electrochemical properties allow using the Bard–Anson electrochemical method to determine the number of metallocenyl units in each block.

  相似文献   


10.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


11.
In this paper, an oxygen‐insensitive degradable resist for UV‐nanoimprint is designed, com­prising a polycyclic degradable acrylate monomer, 2,10‐diacryloyloxymethyl‐1,4,9,12‐tetraoxa­spiro [4.2.4.2] tetradecane (DAMTT), and a multifunctional thiol monomer pentaerythritol tetra(3‐mercaptopropionate) (PETMP). The resist can be quickly UV‐cured in the air atmosphere and achieve a high monomer conversion of over 98%, which greatly reduce the adhesion force between the resist and the soft mold. High conversion, in company with an adequate Young's modulus (about 1 GPa) and an extremely low shrinkage (1.34%), promises high nanoimprint resolution of sub‐50 nm. The cross‐linked resist is able to break into linear molecules in a hot acid solvent. As a result, metallic patterns are fabricated on highly curved surfaces via the lift off process without the assistance of a thermoplastic polymer layer.

  相似文献   


12.
A thermo‐, photo‐ and chemoresponsive shape‐memory material is successfully prepared by introducing α‐cyclodextrin (αCD) and azobenzene (Azo) into a poly(acrylate acid)/alginate (PAA/Alg) network. The tri‐stimuli‐responsive formation/dissociation of αCD‐Azo acts as molecular switches freezing or increasing the molecular mobility. The resulting film herein can be processed into temporary shapes as needed and recovers its initial shape upon the application of light irradiation, heating, or chemical agent independently. Furthermore, the agar diffusion test suggests that the α‐CD‐Alg/Azo‐PAA has good biocompatibility for L929 fibroblast‐like cells.

  相似文献   


13.
An alkyne‐functionalized ruthenium(II) bis‐terpyridine complex is directly copolymerized with phenylacetylene by alkyne polymerization. The polymer is characterized by size‐exclusion chromatography (SEC), 1H NMR spectroscopy, cyclic voltammetry (CV) measurements, and thermal analysis. The photophysical properties of the polymer are studied by UV–vis absorption spectroscopy. In addition, spectro‐electrochemical measurements are carried out. Time‐resolved luminescence lifetime decay curves show an enhanced lifetime of the metal complex attached to the conjugated polymer backbone compared with the Ru(tpy)22+ model complex.

  相似文献   


14.
The precise construction of a hierarchical complex pattern on substrates is required for numerous applications. Here, a strategy to fabricate well‐defined hierarchical three dimensional (3D) patterns on polymer substrate is developed. This technique, which combines photolithography and visible light‐induced surface initiated living graft crosslinking polymerization (VSLGCP), can effectively graft 3D patterns onto polymer substrate with high fidelity and controllable height. Owing to the living nature of VSLGCP, hierarchical 3D patterns can be prepared when a sequential living graft crosslinking process is performed on the first formed patterns. As a proof‐of‐concept, a reactive two layer 3D pattern with a morphology of lateral stripe on vertical stripe is prepared and employed to separately immobilize model biomolecules, e.g., biotin and IgG. This two component pattern can specifically interact with corresponding target proteins successfully, indicating that this strategy has potential applications in the fabrication of polymer‐based multicomponent biomolecule microarrays.

  相似文献   


15.
Liver cancer remains a significant medical problem and one promising therapeutic approach is to embolize the tumor. One emerging embolization strategy is to use thermoresponsive materials that can be injected but gel at the tumor site. It is now reported on thermoresponsive nanocomposites generated by grafting poly(N‐isopropylacrylamide) chains on bacterial cellulose nanowhiskers. Chemical and physical evidences are provided for grafting and demonstrated a sol–gel transition when the temperature is increased above 34.3 °C. Cytotoxicity test in human umbilical vein endothelial cells indicates the excellent biocompatibility of these nanocomposites for use as embolic materials. These results suggest that the nanocomposites offer appropriate properties for embolization of hepatocellular carcinoma.

  相似文献   


16.
Cell transport is important to renew body functions and organs with stem cells, or to attack cancer cells with immune cells. The main hindrances of this method are the lack of understanding of cell motion as well as proper transport systems. In this publication, bubble‐propelled polyelectrolyte microplates are used for controlled transport and guidance of HeLa cells. Cells survive attachment on the microplates and up to 22 min in 5% hydrogen peroxide solution. They can be guided by a magnetic field whereby increased friction of cells attached to microplates decreases the speed by 90% compared to pristine microplates. The motion direction of the cell–motor system is easier to predict due to the cell being opposite to the bubbles.

  相似文献   


17.
Graphene functionalization by hydroxyalkylation and grafting with polyether polyols enables polyurethane (PU) nanocomposites formation by in situ polymerization with isocyanates combined with effective covalent interfacial coupling. Functionalized graphene (FG) hydroxylation is achieved either by alkylation, transesterification, or grafting of thermally reduced graphite oxide. In the presence of K2CO3 as catalyst the reaction of FG‐OH with ethylene carbonate at 180 °C affords hydroxyethylated FG, whereas transesterification with castor oil produces riconoleiate‐modified FG polyols. In the “grafting‐from” process, FG‐alkoholate macro initiators initiate the graft polymerization of propylene oxide to produce hybrid FG polyols containing 38 and 59 wt% oligopropylene oxide. In the “grafting‐to” process 3‐ethyl‐3‐hydroxymethyl‐oxetane is cationically polymerized onto FG‐OH, producing novel hyperbranched FG‐based polyether polyols. Whereas hydroxylation and grafting of FG greatly improve FG dispersion in organic solvents, polyols and even PU, as confirmed by transmission electron microscopy, matrix reinforcement of FG/PU is impaired by increasing alkyl chain length and polyol graft copolymer content.

  相似文献   


18.
1,5,7‐Triazabicyclo[4.4.0]dec‐5‐ene (TBD)‐catalyzed polycondensation reactions of fatty acid derived dimethyl dicarbamates and diols are introduced as a versatile, non‐isocyanate route to renewable polyurethanes. The key step for the synthesis of dimethyl carbamate monomers from plant‐oil‐derived dicarboxylic acids is based on a sustainable base‐catalyzed Lossen rearrangement. The formed polyurethanes with molecular weights up to 25 kDa are characterized by SEC, DSC, and NMR analysis.

  相似文献   


19.
A new approach is reported for the preparation of a graphene–epoxy flexible transparent capacitor obtained by graphene–polymer transfer and UV‐induced bonding. SU8 resin is employed for realizing a well‐adherent, transparent, and flexible supporting layer. The achieved transparent graphene/SU8 membrane presents two distinct surfaces: one homogeneous conductive surface containing a graphene layer and one dielectric surface typical of the epoxy polymer. Two graphene/SU8 layers are bonded together by using an epoxy photocurable formulation based on epoxy resin. The obtained material showed a stable and clear capacitive behavior.

  相似文献   


20.
A simple polymerization of trichlorophosphoranimine (Cl3P = N−SiMe3) mediated by functionalized triphenylphosphines is presented. In situ initiator formation and the subsequent polymerization progress are investigated by 31P NMR spectroscopy, demonstrating a living cationic polymerization mechanism. The polymer chain lengths and molecular weights of the resulting substituted poly(organo)phosphazenes are further studied by 1H NMR spectroscopy and size exclusion chromatography. This strategy facilitates the preparation of polyphosphazenes with controlled molecular weights and specific functional groups at the α‐chain end. Such well‐defined, mono‐end‐functionalized polymers have great potential use in bioconjugation, surface modification, and as building blocks for complex macromolecular constructs.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号