首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple strategy is provided to construct a novel pH‐ and sugar‐induced shape memory hydrogel based on dynamic phenylboronic acid (PBA)–diol interactions formed by PBA‐modified sodium alginate (Alg‐PBA) and poly(vinyl alcohol) (PVA). The dynamic PBA–diol ester bonds serve as temporary cross‐links and stabilize the deformed shape of the hydrogel. The disassociation of the PBA–diol ester bonds is explored in acidic conditions and aqueous solutions of glucose and fructose, which endow the hydrogel with shape memory performances.

  相似文献   


2.
Polyelectrolyte multilayer (PEM) films and capsules loaded with ion‐sensitive fluorophores can be used as ion‐sensors for many applications including measurements of intracellular ion concentration. Previous studies have shown the influence of the PEM films/shells on the specific response of encapsulated ion‐sensitive fluorophores. PEM shells are considered as semipermeable barriers between the environment and the encapsulated fluorophores. Parameters such as the time response of the encapsulated sensor can be affected by the porosity and charge of the PEM shell. In this study, the time response of an encapsulated pH‐sensitive fluorophore towards pH changes in the surrounding environment is investigated. Furthermore, the conductance of PEM films for potassium ions is determined.

  相似文献   


3.
The preparation of multifunctional polymers and block copolymers by a straightforward one‐pot reaction process that combines enzymatic transacylation with light‐controlled polymerization is described. Functional methacrylate monomers are synthesized by enzymatic transacylation and used in situ for light‐controlled polymerization, leading to multifunctional methacrylate‐based polymers with well‐defined microstructure.

  相似文献   


4.
Although various successful strategies have been reported in the past for the postpolymerization modification of the reversible addition‐fragmentation chain transfer (RAFT) terminal group in homogeneous media, no solution is proposed for the tedious case of aqueous polymer dispersions where most of the thiocarbonylthio terminal group is buried into the core of the polymer particle. In this work, ozone is proposed to tackle this important academic and industrial challenge. After preliminary model ozonolysis reactions performed on a xanthate RAFT agent and a derived low molar mass poly(n‐butyl acrylate) (PBA) in dichloromethane solution, it is shown that the hydrophobic nature and strong oxidant properties of ozone are responsible for its efficient diffusion in aqueous PBA latex particles obtained by RAFT and selective and complete transformation of the xanthate terminal group into a thiocarbonate end‐group. In addition to the beneficial total discoloration of the final product, this chemical treatment does not generate any volatile organic compound and leaves the colloidal stability of the polymer particles unaffected, provided that a PBA latex with a sufficiently high Mn of 5000 g mol−1 is selected.

  相似文献   


5.
A linear supramolecular polymer based on the self‐assembly of an easily available copillar[5]arene monomer is efficiently prepared, which is evidenced by the NMR spectroscopy, viscosity measurement, and DOSY experiment. The single‐crystal X‐ray analysis reveals that the polymerization of the AB‐type monomer is driven by the quadruple CH•••π interactions and one CH•••O interaction.

  相似文献   


6.
Polymers with pendant phenoxyl radicals are synthesized and the electrochemical properties are investigated in detail. The monomers are polymerized using ring‐opening metathesis polymerization (ROMP) or free‐radical polymerization methods. The monomers and polymers, respectively, are oxidized to the radical either before or after the polymerization. These phenoxyl radicals containing polymers reveal a reversible redox behavior at a potential of −0.6 V (vs Ag/AgCl). Such materials can be used as anode‐active material in organic radical batteries (ORBs).

  相似文献   


7.
Thin, phenylboronic acid‐containing polymer coatings are potentially attractive sensory layers for a range of glucose monitoring systems. This contribution presents the synthesis and properties of glucose‐sensitive polymer brushes obtained via surface RAFT polymerization of 3‐methacrylamido phenylboronic acid (MAPBA). This synthetic strategy is attractive since it allows the controlled growth of PMAPBA brushes with film thicknesses of up to 20 nm via direct polymerization of MAPBA without the need for additional post‐polymerization modification or deprotection steps. QCM‐D sensor chips modified with a PMAPBA layer respond with a linear change in the shift of the fundamental resonance frequency over a range of physiologically relevant glucose concentrations and are insensitive toward the presence of fructose, thus validating the potential of these polymer brush films as glucose sensory thin coatings.

  相似文献   


8.
(1‐Adamantyl)methyl glycidyl ether (AdaGE) is introduced as a versatile monomer for oxyanionic polymerization, enabling controlled incorporation of adamantyl moieties in aliphatic polyethers. Via copolymerization with ethoxyethyl glycidyl ether (EEGE) and subsequent cleavage of the acetal protection groups of EEGE, hydrophilic linear polyglycerols with an adjustable amount of pendant adamantyl moieties are obtained. The adamantyl unit permits control over thermal properties and solubility profile of these polymers (LCST). Additionally, AdaGE is utilized as a termination agent in carbanionic polymerization, affording adamantyl‐terminated polymers. Using these structures as macroinitiators for the polymerization of ethylene oxide affords amphiphilic, in‐chain adamantyl‐functionalized block copolymers.

  相似文献   


9.
A simplified one‐pot and less harmful method has been introduced for the synthesis of borinic acid monomer. The corresponding borinic acid polymer (PBA) has been prepared by reversible addition‐fragmentation chain transfer polymerization. Property investigations confirm the characteristics of PBA as a new type of “smart material” in the field of thermo‐responsive polymer. The potential application of PBA in the field of enzymatic biofuel cell has been illustrated with a wide open circuit potential of 0.92 V.

  相似文献   


10.
Particles constructed by chiral polymers (defined as PCPs) have emerged as a rapidly expanding research field in recent years because of their potentially wide‐ranging applications in asymmetric catalysis, enantioselective crystallization, enantioselective release, amongst many others. The particles show considerable optical activity, due to the chirality of the corresponding polymers from which the particles are derived. This review article presents an overview on PCPs with emphasis on our group's recent achievements in the preparation of PCPs derived from optically active helical polymers and their applications. PCPs can be prepared via emulsion polymerization, precipitation polymerization, and suspension polymerization by starting from monomers. Emulsification of preformed chiral polymers and self‐assembly approaches also can lead to PCPs. Chiral polymer‐based core/shell particles, hollow particles, and magnetic particles are also covered because of their remarkable properties and significant potential applications.

  相似文献   


11.
Poly‐(N‐isopropylacrylamide) (PNIPA) hydrogel films doped with uniaxially aligned liquid crystalline (LC) nanosheets adsorbed with a dye are synthesized and its anomalous photothermal deformation is demonstrated. The alignment of the nanosheet LC at the cm‐scale is easily achieved by the application of an in‐plane or out‐of‐plane AC electric field during photo‐polymerization. A photoresponsive pattern is printable onto the gel with μm‐scale resolution by adsorption of the dye through a pattern‐holed silicone rubber. When the gel is irradiated with light, only the colored part is photothermally deformed. Interestingly, the photo‐irradiated gel shows temporal expansion along one direction followed by anisotropic shrinkage, which is an anomalous behavior for a conventional PNIPA gel.

  相似文献   


12.
Using the third‐generation Grubbs catalyst, the living ring‐opening metathesis polymerization of ferrocene/cobalticenium copolymers is conducted with theoretical numbers of 25 monomer units for each block, and their redox and electrochemical properties allow using the Bard–Anson electrochemical method to determine the number of metallocenyl units in each block.

  相似文献   


13.
The novel hyperbranched poly(methyl acrylate)‐block‐poly(acrylic acid)s (HBPMA‐b‐PAAs) are successfully synthesized via single‐electron transfer‐living radical polymerization (SET‐LRP), followed with hydrolysis reaction. The copolymer solution could spontaneously form unimolecular micelles composed of the hydrophobic core (PMA) and the hydrophilic shell (PAA) in water. Results show that the size of spherical particles increases from 8.18 to 19.18 nm with increased pH from 3.0 to 12.0. Most interestingly, the unique regular quadrangular prisms with the large microstructure (5.70 μm in length, and 0.47 μm in width) are observed by the self‐assembly of unimolecular micelles when pH value is below 2. Such self‐assembly behavior of HBPMA‐b‐PAA in solution is significantly influenced by the pH cycle times and concentration, which show that increased polymer concentration favors aggregate growth.

  相似文献   


14.
Tuning the chain‐end functionality of a short‐chain cationic homopolymer, owing to the nature of the initiator used in the atom transfer radical polymerization (ATRP) polymerization step, can be used to mediate the formation of a gel of this poly(electrolyte) in water. While a neutral end group gives a solution of low viscosity, a highly homogeneous gel is obtained with a phosphonate anionic moiety, as characterized by rheometry and diffusion nuclear magnetic resonance (NMR). This novel type of supramolecular control over poly(electrolytic) gel formation could find potential use in a variety of applications in the field of electro‐active materials.

  相似文献   


15.
Porous hollow silica particles (HSPs) are presented as new templates to control the product morphology in metallocene‐catalyzed olefin polymerization. By selectively immobilizing catalysts inside the micrometer‐sized porous hollow silica particles, the high hydraulic forces resulting from polymer growth within the confined geometries of the HSPs cause its supporting shell to break up from the inside. As the shape of the support is replicated during olefin polymerization, perfectly spherical product particles with very narrow size distribution can be achieved by using HSPs exhibiting a monomodal size distribution. Furthermore, the size of the obtained product particles can be controlled not only by the polymerization time but also by the size of the support material.

  相似文献   


16.
In this work, the preparation of highly thermoresponsive and fully reversible stretch‐tunable elastomeric opal films featuring switchable structural colors is reported. Novel particle architectures based on poly(diethylene glycol methylether methacrylate‐co‐ethyl acrylate) (PDEGMEMA‐co‐PEA) as shell polymer are synthesized via seeded and stepwise emulsion polymerization protocols. The use of DEGMEMA as comonomer and herein established synthetic strategies leads to monodisperse soft shell particles, which can be directly processed to opal films by using the feasible melt‐shear organization technique. Subsequent UV crosslinking strategies open access to mechanically stable and homogeneous elastomeric opal films. The structural colors of the opal films feature mechano‐ and thermoresponsiveness, which is found to be fully reversible. Optical characterization shows that the combination of both stimuli provokes a photonic bandgap shift of more than 50 nm from 560 nm in the stretched state to 611 nm in the fully swollen state. In addition, versatile colorful patterns onto the colloidal crystal structure are produced by spatial UV‐induced crosslinking by using a photomask. This facile approach enables the generation of spatially cross‐linked switchable opal films with fascinating optical properties. Herein described strategies for the preparation of PDEGMEMA‐containing colloidal architectures, application of the melt‐shear ordering technique, and patterned crosslinking of the final opal films open access to novel stimuli‐responsive colloidal crystal films, which are expected to be promising materials in the field of security and sensing applications.

  相似文献   


17.
Diarylbutadiyne derivatives are ideal monomers for providing the π‐electron‐conjugated system of polydiacetylenes (PDAs). The geometrical parameters for diacetylene topochemical polymerization are known. However, control of the molecules under these parameters is yet to be addressed. This work shows that by simply tailoring diarylbutadiyne with amide side‐chain substituents, the arrangement of the substituents and the resulting hydrogen bond framework allows formation of π‐electron‐conjugated PDA.

  相似文献   


18.
In this study, the group transfer polymerization (GTP) of the functional monomer 3‐(trimethoxysilyl)propyl methacrylate (TMSPMA) is reported to produce polymers of different architectures and topologies. TMSPMA is successfully polymerized and copoly­merized with GTP to produce well‐defined (co)polymers that can be used to fabricate functional hybrid materials like hydrogels and films.

  相似文献   


19.
Aggregation‐induced emission (AIE) dye‐based cross‐linked fluorescent polymeric nanoparticles (FPNs) are facilely prepared via a two‐step polymerization process including emulsion polymerization and subsequent anhydride cross‐linking. Then, a variety of characterization methods are carried out to determine the performance of the FPNs, which show high dispersibility and strong fluorescence in an aqueous solution due to the hydrophilic carboxyl groups on the surfaces and the AIE components as the cores. Biocompatibility evaluation and cell imaging results suggest that these FPNs are biocompatible for cell imaging. More importantly, this cross‐linking strategy is proven to overcome the issue of critical micelle concentration and opens the opportunity to develop more robust fluorescent bioprobes.

  相似文献   


20.
This paper reports on the synthesis of well‐defined polyacrylamide‐based nanogels via reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization, highlighting a templateless route for the efficient synthesis of nanogels based on water‐soluble polymers. RAFT dispersion polymerization of acrylamide in co‐nonsolvents of water–tert‐butanol mixtures by chain extension from poly(dimethylacrylamide) shows well‐controlled polymerization process, uniform nanogel size, and excellent colloidal stability. The versatility of this approach is further demonstrated by introducing a hydrophobic co‐monomer (butyl acrylate) without disturbing the dispersion polymerization process.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号