首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LiFe1 − xMnxPO4 olivines are promising material for improved performance of Li‐ion batteries. Spin–phonon coupling of LiFe1 − xMnxPO4 (x = 0, 0.3, 0.5) olivines is studied through temperature‐dependent Raman spectroscopy. Among the observed phonon modes, the external mode at ~263 cm−1 is directly correlated with the motions of magnetic Fe2+/Mn2+ ions. This mode displays anomalous temperature‐dependent behavior near the Néel temperature, indicating a coupling of this mode with spin ordering. As Mn doping increases, the anomalous behavior becomes clearly weaker, indicating the spin–phonon coupling quickly decreases. Our analyses show that the quick decrease of spin–phonon coupling is due to decrease of the strength of spin–phonon coupling, but not change of spin‐ordering feature with Mn doping. Importantly, we suggest that the low electrochemical activity of LiMnPO4 is correlated with the weak spin–phonon coupling strength, but not with the weak ferromagnetic ground state. Our work would play an important role as a guide in improving the performances of future Li‐ion batteries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
1‐longitudinal optical (LO) phonons in free‐standing mixed Cd1−xZnxS nanocrystals, synthesized using chemical precipitation, are investigated using Raman spectroscopy. As expected for the nanocrystals, the 1‐LO modes are found to appear at slightly lower wavenumbers than those in the bulk mixed crystals and exhibit one‐mode behavior. On the other hand, the line broadening is found to be much more than that can be accounted on the basis of phonon confinement. From the detailed line‐shape analysis it turns out that the substitutional disorder in the mixed crystals contributes much more to the line broadening than the phonon confinement. The linewidth arising from these mechanisms are also extracted from the analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The magnetic properties of Li x CoO2 for x = 0.94, 0.75, 0.66, and 0.51 are investigated within the method combining the generalized gradient approximation with dynamical mean field theory (GGA + DMFT). A delicate interplay between Hund’s exchange energy and t 2g ?e g crystal field splitting is found to be responsible for the high-spin to low-spin state transition for Co4+ ions. The GGA + DMFT calculations show that the Co4+ ions at a small doping level adopt the high-spin state, while delithiation leads to an increase in the crystal field splitting and low-spin state becomes preferable. The Co3+ ions are found to stay in the low-spin configuration for any x values.  相似文献   

4.
All‐optical modulation based on silicon quantum dot doped SiOx:Si‐QD waveguide is demonstrated. By shrinking the Si‐QD size from 4.3 nm to 1.7 nm in SiOx matrix (SiOx:Si‐QD) waveguide, the free‐carrier absorption (FCA) cross section of the Si‐QD is decreased to 8 × 10−18 cm2 by enlarging the electron/hole effective masses, which shortens the PL and Auger lifetime to 83 ns and 16.5 ps, respectively. The FCA loss is conversely increased from 0.03 cm−1 to 1.5 cm−1 with the Si‐QD size enlarged from 1.7 nm to 4.3 nm due to the enhanced FCA cross section and the increased free‐carrier density in large Si‐QDs. Both the FCA and free‐carrier relaxation processes of Si‐QDs are shortened as the radiative recombination rate is enlarged by electron–hole momentum overlapping under strong quantum confinement effect. The all‐optical return‐to‐zero on‐off keying (RZ‐OOK) modulation is performed by using the SiOx:Si‐QD waveguides, providing the transmission bit rate of the inversed RZ‐OOK data stream conversion from 0.2 to 2 Mbit/s by shrinking the Si‐QD size from 4.3 to 1.7 nm.  相似文献   

5.
Device grade quantum dots (QDs) require QDs ensembles to retain their original superior optical properties as in solution. QDs with thick shells are proven effective in suppressing the inter-dot interaction and preserving the emission properties for QDs solids. However, lattice strain–induced defects may form as the shell grows thicker, resulting in a notable photoluminescence quenching. Herein, a well-type CdxZn1−xS/CdSe/CdyZn1−yS QDs is proposed, where ternary alloys CdZnS are adopted to match the lattice parameter of intermediate CdSe by separately adjusting the x and y parameters. The resultant thick-shell Cd0.5Zn0.5S/CdSe/Cd0.73Zn0.27S QDs reveal nonblinking properties with a high PL QY of 99% in solution and 87% in film. The optimized quantum dot light-emitting diodes (QLEDs) exhibit a luminance of 31547.5 cd m−2 at the external quantum efficiency maximum of 21.2% under a bias of 4.0 V. The shell thickness shows great impact on the degradation of the devices. The T50 lifetime of the QLEDs with 11.2 nm QDs reaches 251 493 h, which is much higher than that of 6.5 and 8.4 nm QDs counterparts. The performances of the well-type thick-shell QLEDs are comparable to state-of-the-art devices, suggesting that this type of QDs is a promising candidate for efficient optoelectronic devices.  相似文献   

6.
The energy gap between valence and conduction levels in colloidal semiconductor quantum dots can be tuned via the nanoparticle diameter when this is comparable to or less than the Bohr radius. In materials such as cadmium mercury telluride, which readily forms a single phase ternary alloy, this quantum confinement tuning can also be augmented by compositional tuning, which brings a further degree of freedom in the bandgap engineering. Here it is shown that compositional control of 2.3 nm diameter CdxHg(1?x)Te nanocrystals by exchange of Hg2+ in place of Cd2+ ions can be used to tune their optical properties across a technologically useful range, from 500 nm to almost 1200 nm. Data on composition‐dependent changes in the optical properties are provided, including bandgap, extinction coefficient, emission energy and spectral shape, Stokes shift, quantum efficiency, and radiative lifetimes as the exchange process occurs, which are highly relevant for those seeking to use these technologically important QD materials.  相似文献   

7.
《Current Applied Physics》2018,18(2):267-271
We report resonant Raman scattering results of CdTe/ZnTe self-assembled quantum dot (QD) structures. Photoluminescence spectra reveal that the band gap energies of the CdTe QDs decrease with the increase of CdTe thickness from 2.0 to 3.5 monolayers, which indicates that the size of the QDs increases. When the CdTe/ZnTe QD structures are excited by non-resonant excitation, a longitudinal optical (LO) phonon response from the ZnTe barrier material is observed at 206 cm−1. In contrast, when the CdTe/ZnTe QD structures are resonantly excited near the band gap energy of the QDs, additional phonon modes emerge at 167 and 200 cm−1, while the ZnTe LO phonon response completely disappears. The 167 cm−1 mode corresponds to the LO phonon of the CdTe QDs. A spatially resolved Raman scattering from the cleaved edge of the QD sample reveals that the 200 cm−1 mode is strongly localized at the interface between the CdTe QDs and ZnTe cap layer. This phonon mode is attributed to the interface optical (IO) phonon. The analytically calculated value of the IO phonon energy using a dielectric continuum approach, assuming a spherical dot boundary, agrees well with the experimental value.  相似文献   

8.
A comparative analysis of the kinetic properties of intracenter 3d luminescence of Mn2+ ions in the dilute magnetic superconductors Cd1?x MnxTe and Cd1?x?y MnxMgyTe is carried out. The influence of relative concentrations of the cation components on the position of the intracenter luminescence peak indicates that the introduction of magnesium enhances crystal field fluctuations. As a result, the processes facilitating nonlinear quenching of luminescence are suppressed. The kinetics of 3d-luminescence quenching in Cd1?x MnxTe are accelerated considerably upon elevation of optical excitation level due to the evolution of cooperative processes in the system of excited manganese ions.  相似文献   

9.
The crystal structure, electronic structure, and magnetic behaviors of nonmagnetic Ga ions doped double perovskite La1.5Sr0.5CoMnO6 single phase crystals have been investigated. Different from the traditional magnetic dilution effect of nonmagnetic doping, Ga doping in La1.5Sr0.5CoMnO6 enhances the ferromagnetic (FM) exchange interaction of Co3+-O-Mn3+. Moreover, both conventional and spontaneous exchange bias (EB) effects can be tuned by modulating the Ga doping content, which is accompanied by the variation of the Co3+/4+ and Mn3+/4+ and the effective magnetic moment. The EB field and magnetization can be improved by nonmagnetic Ga3+ doping with content lower than 0.2. The evolution of conventional and spontaneous EB effects in La1.5Sr0.5Co1-xGaxMnO6 can be understood in terms of the unidirectional interface anisotropic coupling between FM/anti-FM, and/or FM/spin glass, which is affected by antisite disorder, spin glass, and the uncompensated coupling between Co and Mn.  相似文献   

10.
This study compares the AC susceptibility, FC-ZFC and hyperfine interactions of Sr(CoxZrx)Fe12−2xO19 and Sr(NixZrx)Fe12−2xO19 hexaferrites (HFs) manufactured via ultrasonic route. The formation of M-type hexaferrites have been confirmed by X-ray powder diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR) and high-resolution transmission electron microscopy (HR-TEM) techniques. Scanning electron microscopy (SEM) presented the hexagonal-platelet morphology of products. The variation in isomer shift, line width, quadrupole splitting and hyperfine magnetic field values of them have been governed by 57Fe Mössbauer spectroscopy which showed that Co2+ and Zr4+ ions located at generally octahedral and 2b sites, while Ni2+ and Zr4+ ions located at octahedral 12k and 4f2 sites. Measurements of magnetization versus temperature (M-T) and AC susceptibility versus temperature were carried out. The various synthesized HFs displayed ferrimagnetic behavior in the temperature interval of 10–325 K. Super-spin glass-like behavior was noticed at lower temperatures. Neel-Arrhenius and Vogel-Fulcher models were used to explore the experimental AC susceptibility. It was showed that a lower Co-Zr substitution content leads to strengthen the magnetic exchange interactions, however even low Ni-Zr substitution content provoke a reduction in magnetic exchange interactions.  相似文献   

11.
We measured the Raman spectra of ZnO nanoparticles (ZnO‐NPs), as well as transition‐metal‐doped (5% Mn(II), Fe(II) or Co(II)) ZnO nanoparticles, with an average size of 9 nm. A typical Raman peak at 436 cm−1 is observed in the ZnO‐NPs, whereas Zn1−xMnxO, Zn1−xFexO and Zn1−xCoxO presented characteristic peaks at 661, 665 and 675 cm−1, respectively. These peaks can be related to the formation of Mn3O4, Fe3O4 and Co3O4 species in the doped ZnO‐NPs. Moreover, these samples were analyzed at various laser powers. Here, we observed new vibrational modes (512, 571 and 528 cm−1), which are specific to Mn, Fe and Co dopants, respectively, and ZnO‐NPs did not reveal any additional modes. The new peaks were interpreted either as disorder activated phonon modes or as local vibrations of Mn‐, Fe‐ and Co‐related complexes in ZnO. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The structural and magnetic properties of the mixed spinel Co1+xSnxFe2?2xO4 system for 0.1≤x≤0.5 have been studied by means of X‐ray diffraction, magnetization, a.c. susceptibility and Mössbauer effect measurements. X‐ray intensity calculations indicate that Sn4+ ions occupy only octahedral (B) sites replacing Fe3+ ions and the added Co2+ ions substitute for A‐site Fe3+ ions. The lattice constants are determined and the applicability of Vegard's law has been tested. The Mössbauer spectra at 300 K have been fitted with two sextets in the ferrimagnetic state corresponding to Fe3+ at tetrahedral (A) and octahedral (B) sites for x≤0.4. The Mössbauer intensity data show that Sn possesses a preference for the B‐site of the spinel. As expected, the hyperfine field and Curie temperature determined from a.c. susceptibility decreases with increasing Sn content. The variation of the saturation magnetic moment per formula unit measured at 77 and 300 K with Sn content is satisfactorily explained on the basis of Néel's collinear spin ordering model for x=0.1–0.4.  相似文献   

13.
The dependence on the metalloid content of some magnetic properties of Co100−x(Si0.6B0.4)x (22.5 ⩽ x ⩽ 30) and Co75Si25−xBx (10 ⩽ x ⩽ 25) amorphous alloys has been studied.Ribbons were subjected to different kinds of heating treatments: field annealing, stress annealing and stress-field annealing (tensile stress and longitudinal magnetic field applied simultaneously). While the anisotropies induced by simple field annealings are of the order of magnitude of 0.1 kJm-3, the anisotropy induced by stress-field annealing can reach values up to 0.5 kJm-3. The preferred axis is longitudinal for most of the annealing conditions. The temperature and composition dependence of the magnetostriction have been studied too.Stress, field and stress-field induced anisotropies have also been measured in Co66Fe9B25 samples (λs > 0). In this case the preferred axis is transverse to the ribbon axis.  相似文献   

14.
Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic semiconductors composed of II-VI compounds Cd1−xCoxX (X=S, Se, Te) at x=0.25. From the calculated results of band structure and density of states, the half-metallic character and stability of ferromagnetic state for Cd1−xCoxS, Cd1−xCoxSe and Cd1−xCoxTe alloys are determined. It is found that the tetrahedral crystal field gives rise to triple degeneracy t2g and double degeneracy eg. Furthermore, we predict the values of spin-exchange splitting energies Δx(d) and Δx(pd) and exchange constants N0α and N0β produced by the Co 3d states. Calculated total magnetic moments and the robustness of half-metallicity of Cd1−xCoxX (X=S, Se, Te) with respect to the variation in lattice parameters are also discussed. We also extend our calculations to x=0.50, 0.75 for S compounds in order to observe the change due to increase in Co.  相似文献   

15.
Structural transformation and the related variation in magnetic and optical properties of Co3?x Fe x O4 thin films grown by a sol–gel method have been investigated as the Fe composition varies up to x?=?2. The normal spinel phase is dominant below x?=?0.55 and the inverse spinel phase grows as x increases further. Conversion electron Mössbauer spectroscopy (CEMS) measurements indicate that the normal spinel phase have octahedral Fe3+ ions mostly while the inverse spinel phase contain octahedral Fe2+ and tetrahedral Fe3+ ions. For higher Fe composition (x?>?1.22), Co2+ ions are found to substitute the octahedral Fe2+ sites. The measured optical absorption spectra for the Co3?x Fe x O4 films by spectroscopic ellipsometry support the CEMS interpretation.  相似文献   

16.
Greatly enhanced and abnormal Raman spectra were discovered in the nominal (Ba1 − xErx)Ti1 − x/4O3 (x = 0.01) (BET) ceramic for the first time and investigated in relation to the site occupations of Er3+ ions. BaTiO3 doped with Ti‐site Er3+ mainly exhibited the common Raman phonon modes of the tetragonal BaTiO3. Er3+ ions substituted for Ba sites are responsible for the abnormal Raman spectra, but the formation of defect complexes will decrease spectral intensity. A large increase in intensity showed a hundredfold selectivity for Ba‐site Er3+ ions over Ti‐site Er3+ ions. A strong EPR signal at g = 1.974 associated with ionized Ba vacancy defects appeared in BET, and the defect chemistry study indicated that the real formula of BET is expressed by (Ba1 − xEr3x/4)(Ti1 − x/4Erx/4)O3. These abnormal Raman signals were verified to originate from a fluorescent effect corresponding to 4S3/24I15/2 transition of Ba‐site Er3+ ions. The fluorescent signals were so intense that they overwhelmed the traditional Raman spectra of BaTiO3. The significance is that the abnormal Raman spectra may act as a probe for the Ba‐site Er3+ occupation in BaTiO3 co‐doped with Er3+ and other dopants. A new broad EPR signal at g = 2.23 was discovered, which originated from Er3+ Kramers ions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
研究了以固相反应法制备Co掺杂ZnO粉体的磁性和光学性能,测试结果表明对于均匀掺杂的Zn0.95Co0.05O粉体,Co2+随机取代Zn2+的位置进入ZnO晶格.Co2+之间的3d自旋电子耦合交换作用使得近邻的Co2+自旋反平行,Zn0.95Co0.05O粉体在3—300K表现为顺磁性,而非铁磁性. 关键词: ZnO 固相反应 稀磁半导体 顺磁性  相似文献   

18.
Based on the effective-mass approximation and variational procedure, ionized donor bound exciton (D+, X) states confined in strained wurtzite (WZ) GaN/AlxGa1-xN cylindrical (disk-like) quantum dots (QDs) with finite-height potential barriers are investigated, with considering the influences of the built-in electric field (BEF), the biaxial strain dependence of material parameters and the applied hydrostatic pressure. The Schrödinger equation via the proper choice of the donor bound exciton trial wave function is solved. The behaviors of the binding energy of (D+, X) and the optical transition associated with (D+, X) are examined at different pressures for different QD sizes and donor positions. In our calculations, the effective masses of electron and hole, dielectric constants, phonon frequencies, energy gaps, and piezoelectric polarizations are taken into account as functions of biaxial strain and hydrostatic pressure. Our results show that the hydrostatic pressure, the QD size and the donor position have a remarkable influence on (D+, X) states. The hydrostatic pressure generally increases the binding energy of (D+, X). However, the binding energy tends to decrease for the QDs with large height and lower Al composition (x<0.3) if the donor is located at z0≤0. The optical transition energy has a blue-shift (red-shift) if the hydrostatic pressure (QD height) increases. For the QDs with small height and low Al composition, the hydrostatic pressure dependence of the optical transition energy is more obvious. Furthermore, the relationship between the radiative decay time and hydrostatic pressure (QD height) is also investigated. It is found that the radiative decay time increases with pressure and the increment tendency is more prominent for the QDs with large height. The radiative decay time increases exponentially reaching microsecond order with increasing QD height. The physical reason has been analyzed in depth.  相似文献   

19.
57Fe Mössbauer spectra at room temperature, both with and without external magnetic field, indicate that Co2+ ions in CoxFe3?xO4spinels (x?0.04) are situated on the octahedral B sites. The Mössbauer parameters are listed and the existence of unpaired Fe3+ ions is evidenced.  相似文献   

20.
The perovskite solid solutions of the type La2xSr2−2xCo2xRu2−2xO6 with 0.25≤x≤0.75 have been investigated for their structural, magnetic and transport properties. All the compounds crystallize in double perovskite structure. The magnetization measurements indicate a complex magnetic ground state with strong competition between ferromagnetic and antiferromagnetic interactions. Resistivity of the compounds is in confirmation with hopping conduction behaviour though differences are noted especially for x=0.4 and 0.6. Most importantly, low field (50 Oe) magnetization measurements display negative magnetization during the zero field cooled cycle. X-ray photoelectron spectroscopy measurements indicate the presence of Co2+/Co3+ and Ru4+/Ru5+ redox couples in all compositions except x=0.5. Presence of magnetic ions like Ru4+ and Co3+ gives rise to additional ferromagnetic (Ru-rich) and antiferromagnetic sublattices and also explains the observed negative magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号