首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Copolymers of 2‐(methacrylamido)glucopyranose (MAG) and methacrylic acid (MAA) are synthesized by RAFT polymerization and then used as templates to prepare glycopolymer‐functionalized Ag nanoclusters (Gly‐Ag NCs) through microwave irradiation. Polymers and the resulting nanoclusters are characterized by NMR, GPC, UV‐Vis, SEM, TEM, AAS and fluorescence spectroscopy. The bio‐activity of the fluorescent Gly‐Ag NCs are further examined using GLUT‐1 over‐expressing cancer cells K562. Gly‐Ag NCs show efficient binding ability toward K562 cells and inhibit the cell viability in a dose dependent manner (IC50 = 0.65 μg mL–1), indicating their potential biological applications for both cancer imaging and targeted cancer therapy.

  相似文献   


2.
A thermo‐, photo‐ and chemoresponsive shape‐memory material is successfully prepared by introducing α‐cyclodextrin (αCD) and azobenzene (Azo) into a poly(acrylate acid)/alginate (PAA/Alg) network. The tri‐stimuli‐responsive formation/dissociation of αCD‐Azo acts as molecular switches freezing or increasing the molecular mobility. The resulting film herein can be processed into temporary shapes as needed and recovers its initial shape upon the application of light irradiation, heating, or chemical agent independently. Furthermore, the agar diffusion test suggests that the α‐CD‐Alg/Azo‐PAA has good biocompatibility for L929 fibroblast‐like cells.

  相似文献   


3.
Pure quaternary tetraalkylammonium chlorides with one long alkyl chain dissolved in various organic solvents constitute a new class of cellulose solvents. The electrolytes are prepared in high yields and purity by Menshutkin quaternization, an inexpensive and easy synthesis route. The pure molten tetraalkylammonium chlorides dissolve up to 15 wt% of cellulose. Cosolvents, including N,N‐dimethylacetamide (DMA), may be added in large excess, leading to a system of decreased viscosity. Contrary to the well‐established solvent DMA/LiCl, cellulose dissolves in DMA/quaternary ammonium chlorides without any pretreatment. Thus, the use of the new solvent avoids some disadvantages of DMA/LiCl and ionic liquids, the most extensively employed solvents for homogeneous cellulose chemistry.

  相似文献   


4.
Hierarchical semicrystalline block copolymer nanoparticles are produced in a segmented gas‐liquid microfluidic reactor with top‐down control of multiscale structural features, including nanoparticle morphologies, sizes, and internal crystallinities. Control of multiscale structure on disparate length scales by a single control variable (flow rate) enables tailoring of drug delivery nanoparticle function including release rates.

  相似文献   


5.
Synthesis of a cyclodextrin (CD) polyrotaxane is achieved for the first time by simultaneous free radical polymerization of isoprene, threading by CD, and stoppering by copolymerization of styrene. This reaction is performed in an eco‐friendly manner in an aqueous medium similar to classical emulsion polymerization. Threaded CD rings of the polyrotaxane are cross‐linked by hexamethylene diisocyanate, leading to highly elastic slide‐ring gels.

  相似文献   


6.
Polysaccharides are abundant in nature, renewable, nontoxic, and intrinsically biodegradable. They possess a high level of functional groups including hydroxyl, amino, and carboxylic acid groups. These functional groups can be utilized for further modification of polysaccharides with small molecules, polymers, and crosslinkers; the modified polysaccharides have been used as effective building blocks in fabricating novel biomaterials for various biomedical applications such as drug delivery carriers, cell‐encapsulating biomaterials, and tissue engineering scaffolds. This review describes recent strategies to modify polysaccharides for the development of polysaccharide‐based biomaterials; typically self‐assembled micelles, crosslinked microgels/nanogels, three‐dimensional hydrogels, and fibrous meshes. In addition, the outlook is briefly discussed on the important aspects for the current and future development of polysaccharide‐based biomaterials, particularly tumor‐targeting intracellular drug delivery nanocarriers.

  相似文献   


7.
Temperature‐triggered switchable nanofibrous membranes are successfully fabricated from a mixture of cellulose acetate (CA) and poly(N‐isopropylacrylamide) (PNIPAM) by employing a single‐step direct electrospinning process. These hybrid CA‐PNIPAM membranes demonstrate the ability to switch between two wetting states viz. superhydrophilic to highly hydrophobic states upon increasing the temperature. At room temperature (23 °C) CA‐PNIPAM nanofibrous membranes exhibit superhydrophilicity, while at elevated temperature (40 °C) the membranes demonstrate hydrophobicity with a static water contact angle greater than 130°. Furthermore, the results here demonstrate that the degree of hydrophobicity of the membranes can be controlled by adjusting the ratio of PNIPAM in the CA‐PNIPAM mixture.

  相似文献   


8.
A triblock copolymer containing the complementary hydrogen bonding recognition pair ureidoguanosine–diaminonaphthyridine (UG–DAN) as pendant functional groups is synthesized using ring‐opening metathesis polymerization (ROMP). The norbornene‐based DAN monomer is shown to allow for a controlled polymerization when polymerized in the presence of a modi­fied‐UG molecule that serves as a protecting group, subsequently allowing for the fabrication of functionalized triblock copolymers. The self‐assembly of the copolymers was characterized using dynamic light scattering and 1H NMR spectroscopy. It is demonstrated that the polymers self‐assemble via complementary hydrogen bonding motifs even at low dilutions, indicating intramolecular interactions.

  相似文献   


9.
Bacterial cellulose (BC) is often regarded as a prime candidate nano‐reinforcement for the production of renewable nanocomposites. However, the mechanical performance of most BC nanocomposites is often inferior compared with commercially available polylactide (PLLA). Here, the manufacturing concept of paper‐based laminates is used, i.e., “PaPreg,” to produce BC nanopaper reinforced PLLA, which has been called “nanoPaPreg” by the authors. It is demon­strated that high‐performance nanoPaPreg (vf = 65 vol%) with a tensile modulus and strength of 6.9 ± 0.5 GPa and 125 ± 10 MPa, respectively, can be fabricated. It is also shown that the tensile properties of nanoPaPreg are predominantly governed by the mechanical performance of BC nanopaper instead of the individual BC nanofibers, due to difficulties impregnating the dense nanofibrous BC network.

  相似文献   


10.
The dimensions of nanocelluloses are important factors in controlling their material properties. The present study reports a fast and robust method for estimating the widths of individual nanocellulose particles based on the turbidities of their water dispersions. Seven types of nanocellulose, including short and rigid cellulose nanocrystals and long and flexible cellulose nanofibers, are prepared via different processes. Their widths are calculated from the respective turbidity plots of their water dispersions, based on the theory of light scattering by thin and long particles. The turbidity‐derived widths of the seven nanocelluloses range from 2 to 10 nm, and show good correlations with the thicknesses of nanocellulose particles spread on flat mica surfaces determined using atomic force microscopy.

  相似文献   


11.
Molecular bottle‐brush functionalized single‐walled carbon nanotubes (SWCNTs) with superior dispersibility in water are prepared by a one‐pot synthetic methodology. Elongating the main‐chain and side‐chain length of molecular bottle‐brushes can further increase SWCNT dispersibility. They show significant enhancement of SWCNT dispersibility up to four times higher than those of linear molecular functionalized SWCNTs.

  相似文献   


12.
The investigation of the coacervation (self‐aggregation) behavior of biomicrogels which can potentially be used as drug carriers is an important topic, because self‐aggregation can not only cause loss of activity, but also toxicity and immunogenicity. To study this effect microgels from elastin‐like recombinamer are synthesized using miniemulsion technique. The existence of coacervation for such microgels, at different concentrations and temperatures, is studied and proved by cryo‐field emission scanning clectron microscopy (cryo‐FESEM), cryo‐transmission electron microscopy (cryo‐TEM), and by a novel 1H high‐resolution magic angle sample spinning (HRMAS), nuclear magnetic resonance (NMR) spectroscopy, and relaxometry methods. The findings by 1H HRMAS NMR spectroscopy and relaxometry show simultaneous processes of volume phase temperature transition and coacervation with different sensitivity for hydrophobic and hydrophilic amino acid side‐chains in the microgel. The coacervation process is more evidential by the behavior of glycine α‐CH2, 1H NMR peak as compared to the proline βCH2.

  相似文献   


13.
A switch from carbanions to aza‐anions is performed by the addition of N‐tosylaziridine (TAz) to living poly(styryl) (PS) chains. This is the first example of carbanionic aziridine ring‐opening which was previously activated by amidation with a tosyl group to enable nucleophilic ring‐opening by the living chain end. Poly(styrene)‐tosylaziridines (PSTAz) with narrow molecular weight distributions and variable molecular weights are synthesized. The removal of the tosyl group and subsequent functionalization is shown, evidencing quantitative transfer to azaanionic species. All polymers are characterized in detail by 1H NMR spectroscopy, DOSY 1H NMR spectroscopy, and size exclusion chromatography (SEC). This strategy allows the introduction of amine groups via anionic polymerization in analogy to the well‐established epoxide termination.

  相似文献   


14.
Novel supramolecular phosphorescent polymers (SPPs) are synthesized as a new class of solution‐processable electroluminescent emitters. The formation of these SPPs takes advantage of the efficient non‐bonding assembly between bis(dibenzo‐24‐crown‐8)‐functionalized iridium complex monomer and bis(dibenzylammonium)‐tethered co‐monomer, which is monitored by 1H NMR spectroscopy and viscosity measurements. These SPPs show good film morphology and an intrinsic glass transition with a Tg of 94–116 °C. Noticeably, they are highly photoluminescent in solid state with quantum efficiency up to ca. 78%. The photophysical and electroluminescent properties are strongly dependent on the molecular structures of the iridium complex monomers.

  相似文献   


15.
The chemical synthesis of a novel polyfuran, poly(2,3‐bis(hexylthio)‐[1,4]dithiino[2,3‐c]furan) ( PBDF ), substituted at the 2,3‐positions with an S‐alkylated dithiin unit, is reported. The new polymer has been characterized in terms of its electronic absorption, electrochemical, and thermal properties. Employment of the dithiin moiety provides intrinsic additional electroactivity, as well as a functional handle for substitution with alkyl groups, enhancing the processability of the polymer. The new polymer is compared with the closely related and well‐established literature compounds PEDOT and PEDTT as well‐studied, highly chalcogenated polythiophenes.

  相似文献   


16.
Using the third‐generation Grubbs catalyst, the living ring‐opening metathesis polymerization of ferrocene/cobalticenium copolymers is conducted with theoretical numbers of 25 monomer units for each block, and their redox and electrochemical properties allow using the Bard–Anson electrochemical method to determine the number of metallocenyl units in each block.

  相似文献   


17.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


18.
A facile and efficient methodology for the formation of polymer‐fullerene networks via a light‐induced reaction is reported. The photochemical crosslinking is based on a nitrile imine‐mediated tetrazole‐ene cycloaddition reaction, which proceeds catalyst‐free under UV‐light irradiation (λmax = 320 nm) at ambient temperature. A tetrazole‐functionalized polymer (Mn = 6500 g mol−1, Ð = 1.3) and fullerene C60 are employed for the formation of the hybrid networks. The tetrazole‐functionalized polymer as well as the fullerene‐containing networks are carefully characterized by NMR spectrometry, size exclusion chromatography, infrared spectroscopy, and elemental analysis. Furthermore, thermal analysis of the fullerene networks and their precursors is carried out. The current contribution thus induces an efficient platform technology for fullerene‐based network formation.

  相似文献   


19.
A novel one‐component type II polymeric photoinitiator, poly(vinyl alcohol)–thioxanthone (PVA–TX), is synthesized by a simple acetalization process and characterized. PVA–TX enables photopolymerization of methyl methacrylate and acrylamide in both organic and aqueous media. Photopolymerization proceeds even in the absence of a co‐initiator since PVA–TX possesses both chromophoric and hydrogen donating sites in the structure.

  相似文献   


20.
Though great attention has been paid in constructing well‐defined nano‐structures via the self‐assembly of amphiphilic macromolecules, the self‐assembly of non‐amphiphilic macromolecules in nanodroplet has drawn less attention up to now. Recently, we prepared a temperature‐responsive PEG‐based branched polymer with disulfide bonds in its backbone via reversible addition–fragmentation chain transfer (RAFT) polymerization of 2‐(2‐methoxyethoxy) ethyl methacrylate, oligo(ethylene glycol) methacrylate, and N,N′‐cystamine bisacrylamide. Subsequently, we loaded the branched polymer into nanodroplets, and have found that the self‐assembly behaviors of this branched poly­mer in the nanodroplet are different from those in common solution. Bioreducible nanocapsules with tunable size can easily formed in nanodroplet even at high concentration.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号