首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new molecular recognition motif between a water soluble pillar[10]arene ( WP10 ) and 1,10‐phenanthrolinium guest ( G ) in water is established. Mainly driven by the cooperativity of multiple electrostatic interactions, hydrophobic interactions, and π–π stacking interactions between WP10 and G , this host–guest complex exhibits a high association constant in water, which is about 17 times higher than that between WP10 and paraquat ( PQ ). Furthermore, this size selective host–guest complexation is employed to tune the lower critical solution temperature behavior of a random copolymer with PQ derivative pendants.

  相似文献   


2.
A novel procedure has been developed for the Gilch reaction leading to poly(p‐phenylene vinylenes) (PPVs). In the first step, selective activation of the starting material is achieved at low temperature. Subsequently, controlled chain growth is induced by lighting the α‐halo‐p‐quinodimethane monomer. In contrast to the thermal Gilch polymerization, the photoinduced process allows adjusting crucial parameters such as intensity and energy of light. The progress of PPV formation can be followed visually or by in situ UV–vis spectroscopy. If the polymers are formed under appropriate conditions, they show very high molar masses, polydispersities in the common range, and higher constitutional homogeneity than thermally grown PPVs.

  相似文献   


3.
Two soluble poly(phenyltriazolylcarboxylate)s (PPTCs) with high molecular weights (M w up to 26 800) are synthesized by the metal‐free 1,3‐dipolar polycycloadditions of 4,4′‐isopropylidenediphenyl diphenylpropiolate ( 1 ) and tetraphenylethene‐containing diazides ( 2 ) in dimethylformamide at 150 °C for 12 h in high yields (up to 93%). The resultant polymers are soluble in common organic solvents and are thermally stable with 5% weight loss temperatures higher than 375 °C. The PPTCs are nonemissive in solutions, but become highly luminescent upon aggregation, showing a phenomenon of aggregation‐induced emission. Their aggregates can be used as fluorescent chemosensors for high‐sensitivity detection of explosives.

  相似文献   


4.
Liver cancer remains a significant medical problem and one promising therapeutic approach is to embolize the tumor. One emerging embolization strategy is to use thermoresponsive materials that can be injected but gel at the tumor site. It is now reported on thermoresponsive nanocomposites generated by grafting poly(N‐isopropylacrylamide) chains on bacterial cellulose nanowhiskers. Chemical and physical evidences are provided for grafting and demonstrated a sol–gel transition when the temperature is increased above 34.3 °C. Cytotoxicity test in human umbilical vein endothelial cells indicates the excellent biocompatibility of these nanocomposites for use as embolic materials. These results suggest that the nanocomposites offer appropriate properties for embolization of hepatocellular carcinoma.

  相似文献   


5.
Cyclic polymers with alternating monomer sequence are synthesized for the first time based on the ring‐closure strategy. Well‐defined telechelic alternating polymers are synthesized by reversible addition–fragmentation chain transfer polymerization by copolymerizing the electron acceptor monomer of N‐benzylmaleimide and donor monomer of styrene with a feed ratio of 1 between them. The corresponding cyclic alternating polymers are then produced by the UV‐induced Diels–Alder click reaction to ring‐close the linear alternating polymer precursors under highly diluted reaction solution.

  相似文献   


6.
Gold nanoshell‐functionalized polymer multilayer tubes can be used as potent therapeutic agents for remote killing of cancer cells in a controlled manner due to the emerging pressure wave and tube fragments piercing the cell wall. The explosion is based on rapid evaporation of water inside the tubes caused by photothermal effects. The mechanism of explosion is presented in theory and experiment. The explosion of the tubes depends on the absorption coefficient and size of the gold nanoshells in the tubes, whereby the placement of the gold particles inside or outside of the tubes has no obvious effect on the explosive properties.

  相似文献   


7.
A novel polymer featuring oligoaniline pendants that exhibits reversible electroactivity and good electrochromic properties with high contrast value, acceptable switching times, and excellent coloration efficiency is presented. This polymer can undergo reversible changes in fluorescence in response to reductive and oxidative chemical stimulus, pH, and electrical potential. The fluorescence switching operation shows reasonable reversibility and reproducibility when subjected to multiple stimuli. In this elegant fluorescence switching system, the oligoaniline pendants are used as fluorophore and regulatory units simultaneously.

  相似文献   


8.
The kinetics of mechanochemical chain scission of poly(phthalaldehyde) (PPA) are investigated. Ultrasound‐induced cavitation is capable of causing chain scission in the PPA backbone that ultimately leads to rapid depolymerization of each resulting polymer fragment when above the polymer's ceiling temperature (Tc). An interesting feature of the mechanochemical breakdown of PPA is that “half‐chain” daughter fragments are not observed, since the depolymerization is rapid following chain scission. These features facilitate the determination of rate constants of activation for multiple molecular weights from a single sonication experiment. Additionally, the degradation kinetics are modified with chain‐end trapping agents through variation of the nature and amount of small molecule nucleophile or electrophile.

  相似文献   


9.
Low‐molecular‐weight poly(ethylene glycol) (PEG) is deliberately incorporated into synthesized swellable poly(ethylene oxide) (PEO) membranes via a facile post‐treatment strategy. The membranes exhibit both larger fractional free volume (FFV) and a higher content of CO2‐philic building units, resulting in significant increments in both CO2 permeability and CO2/H2 selectivity. The separation performance correlates nicely with the microstructure of the membranes. This study may provide useful insights in the formation and mass transport behavior of highly efficient polymeric membranes applicable to clean energy purification and CO2 capture, and possibly bridge the material‐induced technology gap between academia and industry.

  相似文献   


10.
Molecular bottle‐brush functionalized single‐walled carbon nanotubes (SWCNTs) with superior dispersibility in water are prepared by a one‐pot synthetic methodology. Elongating the main‐chain and side‐chain length of molecular bottle‐brushes can further increase SWCNT dispersibility. They show significant enhancement of SWCNT dispersibility up to four times higher than those of linear molecular functionalized SWCNTs.

  相似文献   


11.
Self‐initiated photografting polymerization is used to couple the polymerizable initiator monomer 2‐(2‐chloropropanoyloxy)ethyl acrylate to a range of polymeric substrates. The technique requires only UV light to couple the initiator to surfaces. The initiator surface density can be varied by inclusion of a diluent monomer or via selection of initiator and irradiation parameters. The functionality of the initiator surface is demonstrated by subsequent surface‐initiated atom transfer radical polymerization. Surfaces are characterized by x‐ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM), and UV‐induced changes to the initiator are assessed by 1H NMR and gel permeation chromatography (GPC). This is the first time this one‐reactant one‐step technique has been demonstrated for creating an initiator surface of variable density.

  相似文献   


12.
Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well‐soluble salt triethyloctylammonium chloride (Et3OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved.

  相似文献   


13.
Halo‐ester‐functionalized poly(ethylene glycol)s (PEGs) are successfully prepared by the transesterification of alkyl halo‐esters with PEGs using Candida antarctica lipase B (CALB) as a biocatalyst under the solventless conditions. Transesterifications of chlorine, bromine, and iodine esters with tetraethylene glycol monobenzyl ether (BzTEG) are quantitative in less than 2.5 h. The transesterification of halo‐esters with PEGs are complete in 4 h. 1H and 13C NMR spectroscopy with MALDI‐ToF and ESI mass spectrometry confirm the structure and purity of the products. This method provides a convenient and “green” process to effectively produce halo‐ester PEGs.

  相似文献   


14.
Amino‐cellulose‐based nanofibers are prepared by electrospinning of blended solutions of 6‐deoxy‐6‐trisaminoethyl‐amino (TEAE) cellulose and polyvinyl alcohol (PVA). The TEAE cellulose with a degree of substitution of 0.67 is synthesized via a nucleophilic displacement reaction starting from cellulose‐p‐toluenesulfonic acid ester. Several solution characteristics such as polymer concentration, electrical conductivity, and surface tension as well as setup parameters are investigated to optimize the ability of nanofiber formation. These parameters are evaluated using the rheological studies of the solutions. The nanofibers obtained are characterized by scanning electron microscopy (SEM) and show a high antimicrobial activity against Staphylococcus aureus and Klebsiella pneumoniae.

  相似文献   


15.
The preparation of multifunctional polymers and block copolymers by a straightforward one‐pot reaction process that combines enzymatic transacylation with light‐controlled polymerization is described. Functional methacrylate monomers are synthesized by enzymatic transacylation and used in situ for light‐controlled polymerization, leading to multifunctional methacrylate‐based polymers with well‐defined microstructure.

  相似文献   


16.
Described herein is a new printing method—direct writing of conducting polymers (CPs)—based on pipette‐tip localized continuous electrochemical growth. A single barrel micropipette containing a metal wire (Pt) is filled with a mixture of monomer, supporting electrolyte, and an appropriate solvent. A droplet at the tip of the pipette contacts the substrate, which becomes the working electrode of a micro‐electrochemical cell confined to the tip droplet and the pipette. The metallic wire in the pipette acts as both counter and reference electrode. Electropolymerization forms the CP on the working electrode in a pattern controlled by the movement of the pipette. In this study, various width poly(pyrrole) 2D and 3D structures are extruded and characterized in terms of microcyclic voltammetry, Raman spectroscopy, and scanning electron microscopy.

  相似文献   


17.
Cationic polyelectrolytes showing an upper critical solution temperature (UCST) are synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization in water at a temperature well above the UCST. The polymerization is well controlled by the RAFT process, with excellent pseudo‐first‐order kinetics. The cloud point is highly dependent on the polyelectrolyte concentration, molecular weight, and presence of added electrolyte. Alkylation of a neutral polymer is also conducted to obtain polyelectrolytes with different hydrophobic groups, which are shown to increase the cloud point.

  相似文献   


18.
Improving thermal stability of TEMPO‐oxidized cellulose nanofibrils (TOCNs) is a major challenge for the development and preparation of new nanocomposites. However, thermal degradation of TOCNs occurs at 220 °C. The present study reports a simple way to improve thermal stability of TOCNs by the heat‐induced conversion of ionic bonds to amide bonds. Coupling amine‐terminated polyethylene glycol to the TOCNs is performed through ionic bond formation. Films are produced from the dispersions by the casting method. Infrared spectroscopy and thermogravimetric analysis confirm conversion of ionic bonds to amide bonds for the modified TOCN samples after heating. As a result, improvement of TOCNs' thermal stability by up to 90 °C is successfully achieved.

  相似文献   


19.
Hierarchical semicrystalline block copolymer nanoparticles are produced in a segmented gas‐liquid microfluidic reactor with top‐down control of multiscale structural features, including nanoparticle morphologies, sizes, and internal crystallinities. Control of multiscale structure on disparate length scales by a single control variable (flow rate) enables tailoring of drug delivery nanoparticle function including release rates.

  相似文献   


20.
Dynamic covalent hydrogels are facilely prepared from biocompatible polysaccharides in physiological conditions by the formation of phenylboronate ester cross‐links. This is based on the simple mixing of carboxylate‐containing polysaccharides (i.e., hyaluronic acid or carboxymethylcellulose) modified with phenylboronic acid and maltose moieties according to mild coupling reactions performed in aqueous solution. The formation of dynamic networks based on reversible boronic‐ester cross‐links is demonstrated by analyzing their rheological behavior. This study shows that these gels can adapt their structure in response to chemical stimuli such as variations in pH or addition of glucose and self‐heal.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号