首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combination of self‐complementary hydrogen bonding and metal–ligand interactions allows stereocontrol in the self‐assembly of prochiral ligand scaffolds. A unique, non‐tetrahedral M4L6 structure is observed upon multicomponent self‐assembly of 2,7‐diaminofluorenol with 2‐formylpyridine and Fe(ClO4)2. The stereochemical outcome of the assembly is controlled by self‐complementary hydrogen bonding between both individual ligands and a suitably sized counterion as template. This hydrogen‐bonding‐mediated stereoselective metal–ligand assembly allows the controlled formation of nonsymmetric discrete cage structures from previously unexploited ligand scaffolds.  相似文献   

2.
A series of linear doubly discotic triad supermolecules based on a porphyrin (P) core and two triphenylene (Tp) arms linked by amide bonds are synthesized. The samples are denoted as P(Tp)2. Hydrogen bonding along the P stacks is the primary driving force for the supramolecular self‐assembly of P(Tp)2 triad supermolecules. Meanwhile, the degree of coupling between P and Tp disks also plays an important role. For samples with the spacer lengths longer than or similar to the alkyl chain lengths in the Tp arms, P and Tp are decoupled to a large degree. This decoupling result in non‐uniform tilt angles for P and Tp disks along both the a‐ and c‐axes. Therefore, large unit cells are observed with eight P(Tp)2 supermolecules per cell. For a sample with the spacer length much shorter than the alkyl chains in the Tp arms, P and Tp are strongly coupled. Therefore, both P and Tp have uniform tilt angles along the a‐ and c‐axes. A small unit cell is obtained with only one P(Tp)2 supermolecule per cell.  相似文献   

3.
Two well‐defined diblock copolymers with quadruple hydrogen‐bonding groups on one block, denoted PSUEA‐1 and PSUEA‐2 , have been synthesized, and novel snowflake‐shaped nanometer‐scale aggregates, self‐assembled by such diblock copolymers in non‐polar solvents, have been observed. The micellar dimensions were investigated by DLLS and SLLS. Their morphologies were studied by TEM. Since the degrees of polymerization of the Upy‐containing blocks of PSUEA‐1 and PSUEA‐2 are quite similar and the polystyrene block of the PSUEA‐1 is longer than that of the PSUEA‐2 , a subtle but identifiable difference between the sizes and structures of the PSUEA‐1 and PSUEA‐2 aggregates was noticed and characterized.

  相似文献   


4.
A unique example of macromolecular self‐assembly, where a mono‐component homopolyimide bearing carboxy end‐groups spontaneously forms nanopartilces with novel dimple‐like morphology in a single good solvent, is presented. The self‐assembly process is dramatically affected by the solution concentration and the temperature. It is proposed that such an unexpected self‐assembly behavior is a synergistic result of the self‐complementary hydrogen bonding between carboxy end‐groups and the propensity to parallel packing of polyimide chains through aromatic interactions.

  相似文献   


5.
Ureido‐pyrimidinone (UPy) dimers substituted with an additional urea functionality self‐assemble into one‐dimensional stacks in various solvents through lateral non‐covalent interactions. 1H NMR and DOSY studies in CDCl3 suggest the formation of short stacks (<10), whereas temperature‐dependent circular dichroism (CD) studies on chiral UPy dimers in heptane show the formation of much larger helical stacks. Analysis of the concentration‐dependent evolution of chemical shift in CDCl3 and the temperature‐dependent CD effect in heptane suggest that this self‐assembly process follows an isodesmic pathway in both solvents. The length of the aggregates is influenced by substituents attached to the urea functionality. In sharp contrast, UPy dimers carrying an additional urethane group do not self‐assemble into ordered stacks, as is evident from the absence of a CD effect in heptane and the concentration‐independent chemical shift of the alkylidene proton of the pyrimidinone ring in CDCl3.  相似文献   

6.
Thermoresponsive synergistic hydrogen bonding (H‐bonding) switched by several guest units in a water‐soluble polymer is reported. Adjusting the distribution of guest units can effectively change the synergistic H‐bonding inside polymer chains, thus widely switch the preorganization and thermoresponsive behavior of a water‐soluble polymer. The synergistic H‐bonding is also evidenced by converting less polar aldehyde groups into water‐soluble oxime groups, which bring about the lowering‐down of cloud point and an amplified hysteresis effect. This is a general approach toward the wide tunability of thermosensitivity of a water‐soluble polymer simply by adjusting the distribution of several guest H‐bonding units.  相似文献   

7.
This paper reports on the synthesis and self‐organizing properties of monodendrons consisting of L ‐alanine at the focal point and alkyl chains with different length at the periphery. The structures of thin films and monolayers are studied by temperature‐resolved grazing‐incidence X‐ray diffraction and scanning force microscopy. The interplay between H‐bonding and ordering of the alkyl chains results in a rich temperature‐dependent phase behavior. The monodendrons form H‐bonded stabilized clusters with the number of molecules depending on the length of the aliphatic chains and temperature. The clusters play the role of constitutive units in the subsequent self‐assembly. Short alkyl chains allow the material to form thermodynamically stable crystalline phases. The molecules with longer side groups exhibit additional transitions from the crystalline phase to thermotropic columnar hexagonal or columnar rectangular liquid‐crystalline phases. In monolayers deposited on highly ordered pyrolytic graphite, the materials show ordering similar to thin films. However, for the compound bearing hexadecyl chains the affinity of the alkyl groups to graphite dominates the self‐assembly and thereby allows epitaxial growth of a 2D lattice with flat‐on oriented molecules.  相似文献   

8.
Simultaneous coordination‐association and electrostatic‐repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self‐assembly of artificial aqueous polymer single‐chain nanoparticles (SCNPs). Herein, the construction and self‐assembly of dative‐bonded aqueous SCNPs are reported via simultaneous coordination‐association and electrostatic‐repulsion interactions within single chains of histamine‐based hydrophilic block copolymer. The electrostatic‐repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)‐coordination leads to the intramolecular association and single‐chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative‐bonded block and steric shielding of nonionic water‐soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media‐sensitive phase‐transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme‐inspired smart aqueous catalysts.

  相似文献   


9.
A new polyhedral oligomeric silsesquioxane macromer, octakis[N‐(6‐aminopyridin‐2‐yl)undecanamide‐10‐dimethyl‐siloxy]silsesquioxane (POSS‐C11‐Py), containing eight diaminopyridine arms, is able to self‐assemble to form a physically crosslinked polymer‐like structure with good mechanical properties (tensile strength = 46.1 MPa, tensile modulus = 0.58 GPa, elongation = 49.3%) through quadruple hydrogen bonding interactions between these arms. POSS‐C11‐Py is the first organic/inorganic supermolecule possessing polymer‐like mechanical properties as a result of self‐complementary interactions, providing a potential route toward the design and fabrication of polymer‐like supramolecular materials.

  相似文献   


10.
Developing simple methods to organize nanoscale building blocks into ordered superstructures is a crucial step toward the practical development of nanotechnology. Bottom‐up nanotechnology using self‐assembly bridges the molecular and macroscopic, and can provide unique material properties, different from the isotropic characteristics of common substances. In this study, a new class of supramolecular hydrogels comprising 40 nm thick linear polymer layers sandwiched between nanolayers of self‐assembled amphiphilic molecules are prepared and studied by nuclear magnetic resonance spectroscopy, scanning electronic microscopy, small angle X‐ray diffraction, and rheometry. The amphiphilic molecules spontaneously self‐assemble into bilayer membranes when they are in liquid‐crystal state. The hydrogen bonds at the interface of the nanolayers and linear polymers serve as junctions to stabilize the network. These hydrogels with layered structure are facile to prepare, mechanically stable, and with unique temperature‐dependent optical transparency, which makes it interesting in applications, such as soft biological membranes, drug release, and optical filters.

  相似文献   


11.
Due to their inherently dynamic natures and fascinating photoluminescent/photoelectronic properties, coordination compounds of metal ions and conjugated terpyridine ligands have attracted considerable attention as functional materials for a variety of potential applications. In this feature article, a summary of recent work toward the development of one‐ (1D), two‐ (2D), and three‐dimensional (3D) supramolecular polymers, networks, and metallomacrocycles based on zinc metal ion coordination of conjugated units bearing terpyridine ligands is presented, and it is shown how it fits within the overall framework of work in this field. Here, a sequential study from terpyridines as basic building blocks to their zinc‐coordinated supramolecular 1D polymers, 2D macrocycles, and 2D and 3D networks is developed. These networks are compared with respect to their thermal stabilities, molecular organization, and linear and nonlinear optical properties. This work opens new prospects for the development of supramolecular chemistry of terpyridines and other transition metal ions, and also their application in future optoelectronic devices.

  相似文献   


12.
A comprehensive investigation of the complementary H‐bonding‐mediated self‐assembly between dipyrrolo[2,3‐b:3′,2′‐e]pyridine (P2P) electron donors and naphthalenediimide/perylenediimide (NDI/PDI) acceptors is reported. The synthesis of parent P2P and several aryl‐substituted derivatives is described, along with their optical, redox, and single‐crystal packing characteristics. The dual functionality of heteroatoms in the P2P/NDI(PDI) assembly, which act as proton donors/acceptors and also contribute to π‐conjugation, leads to H‐bonding‐induced perturbation of electronic levels. Concentration‐dependent NMR and UV/Vis spectroscopic studies revealed a cooperative effect of H‐bonding and π–π stacking interactions. This H‐bonding‐mediated co‐assembly of donor (D) and acceptor (A) components leads to a new charge‐transfer (CT) absorption that can be controlled throughout the visible range. The electronic interactions between D and A were further investigated by time‐dependent DFT, which provided insights into the nature of the CT transition. Electropolymerization of difuryl‐P2P afforded the first conjugated polymer incorporating H‐bonding recognition units in its main chain.  相似文献   

13.
We have created a selective macroscopic self‐assembly process by using polymer gels modified with complementary DNA oligonucleotides or nucleobases. The hydrogels modified with complementary DNA oligonucleotides adhered to each other by simple contact. The organogels modified with complementary nucleobases selectively formed macroscopic assemblies by agitation in nonpolar organic solvents. The adhesion strength of each gel was estimated semi‐quantitatively by stress–strain measurements. We achieved direct adhesion between macroscopic materials both in water and in organic media, based on complementary hydrogen bonds.  相似文献   

14.
A novel sextuple hydrogen‐bonding (HB) self‐assembly molecular duplex bearing red‐emitting perylene diimide (PDI) fluorophores, namely PDIHB , was synthesized, and its molecular structure was confirmed by 1H NMR, 13C NMR, TOF‐MS and 2D NMR. Compared with the small molecular reference compound PDI , PDIHB shows one time enhanced fluorescence efficiency in solid state (4.1% vs. 2.1%). More importantly, the presence of bulky HB oligoamide strands in PDIHB could trigger effective spatial separation between guest and host fluorophores in thin solid film state, hence inefficient energy transfer occurs between the blue‐emitting host 2TPhNIHB and red guest PDIHB in the 2 wt% guest/host blending film. As a result, a solution‐processed organic light‐emitting diode (OLED) with quite simple device structure of ITO/PEDOT:PSS (40 nm)/PVK (40 nm)/ PDIHB (2 wt%): 2TPhNIHB (50 nm)/LiF (0.8 nm)/Al (100 nm) could emit bias‐independent warm‐white electroluminescence with stable Commission Internationale de L'Eclairage coordinates of (0.42, 0.33), and the maximum brightness and current efficiency of this device are 260 cd·m?2 and 0.49 cd·A?1, respectively. All these results indicated that HB self‐assembly supramolecular fluorophores could act as prospective materials for white OLED application.  相似文献   

15.
MoO3 has a unique rigid double‐layer structure, which makes it a real challenge to prepare nanotubular structures. The controlled synthesis of MoO3 single‐walled nanotubes (SWNTs) is achieved through a cluster‐based self‐assembly route on the dodecanethiol/water interface. Various factors are studied at length, including precursor type, reaction time, temperature, pH value, and their influence on the morphology of products. The concept of “self‐assembly—from simple clusters to nanostructures” is proposed here based on preliminary results from the synthesis of MoO3 SWNTs, which provides a new aspect for traditional synthetic chemistry of nanomaterials and polyoxometalates.  相似文献   

16.
[2.2]paracyclophane (pCp), unlike many π‐building blocks, has been virtually unexplored in supramolecular constructs. Reported here is the synthesis and characterization of the first pCp derivatives capable of programmed self‐assembly into extended cofacial π‐stacks in solution and the solid state. The design employs transannular (intramolecular) hydrogen bonds (H‐bonds), hitherto unstudied in pCps, between pseudo‐ortho‐positioned amides of a pCp‐4,7,12,15‐tetracarboxamide (pCpTA) to preorganize the molecules for intermolecular H‐bonding with π‐stacked neighbors. X‐ray crystallography confirms the formation of homochiral, one‐dimensional pCpTA stacks helically laced with two H‐bond strands. The chiral sense is dictated by the planar chirality (Rp or Sp) of the pCpTA monomers. A combination of NMR, IR, and UV/Vis studies confirms the formation of the first supramolecular pCp polymers in solution.  相似文献   

17.
A novel application of supramolecular interactions within semicrystalline polymers, capable of self‐assembling into supramolecular polymer networks via self‐complementary multiple hydrogen‐bonded complexes, is demonstrated for efficient construction of highly controlled self‐organizing hierarchical structures to offer a direct, efficient nucleation pathway resulting in superior crystallization performance. Herein, a novel functionalized poly(ε‐caprolactone) containing self‐complementary sextuple hydrogen‐bonded uracil‐diamidopyridine (U‐DPy) moieties is successfully developed and demonstrated excellent thermal and viscoelastic properties as well as high dynamic structural stability in the bulk state due to physical cross‐linking created by reversible sextuple hydrogen bonding between U‐DPy units. Due to the ability to vary the extent of the reversible network by tuning the U‐DPy content, this newly developed material can be readily adjusted to obtain the desired crystalline products with specific characteristics. Importantly, incorporating only 0.1% U‐DPy resulted in a polymer with a high crystallization rate constant, short crystallization half‐time, and much more rapid crystallization kinetics than pristine PCL, indicating a low content of U‐DPy moieties provides highly efficient nucleation sites that manipulate the nucleation and growth processes of polymer crystals to promote crystallization and chain alignment in bulk. This new system is suggested as a potential new route to substantially improve the performance of polymer crystallization.

  相似文献   


18.
Summary: Thermosensitive polymer nanocontainers were formed by self‐assembly of diblock copolymers poly(2‐cinnamoylethyl methacrylate)‐block‐poly(N‐isopropylacrylamide) (PCEMA‐block‐PNIPAM) and subsequent photo‐crosslinking of the PCEMA shells. It was found that the diameter of the nanocontainers ranges from tens of nanometers to thousands of nanometers, depending on the self‐assembly conditions. The phase transition of the nanocontainers takes place at 32 °C; the structural changes are reversible in a heating and cooling cycle.

Schematic illustration of the structural transition behavior of the thermosensitive polymer nanocontainers.  相似文献   


19.
A novel sextuple hydrogen‐bonding (HB) self‐assembly molecular heterodimer bearing an iridium complex as the indicator dye and two carbazoles as the reference dye, namely 6HB‐Irbt‐Cz , was synthesized, and its molecular structure was confirmed by 1H NMR, 13CNMR, TOF‐MS and 2D NMR. Because of the inefficient energy transfer process between the carbazole and iridium complex units, 6HB‐Irbt‐Cz exhibits distinct ?uorescence/phosphorescence dual emission in neat film state. More importantly, the neat film sample of 6HB‐Irbt‐Cz could display linear ratiometric optical response toward oxygen in the full oxygen concentration range from 0 to 100 vol%, together with good stability, reversibility and rapid response‐recovery times. Note that this represents the first discovery of neat‐film‐based oxygen sensor capable of showing strictly linear ratiometric Stern‐Volmer behavior in the oxygen concentration of 0–100 vol%.  相似文献   

20.
The directed self‐assembly of gold nanoparticles through the crystallization of surface‐grafted polyethylene oxide (PEO) in ethanol–water mixtures is described. This process is fully reversible and tunable through either the size of the core or the polymeric coating. Characterization by X‐ray scattering and electron microscopy of the self‐assembled structures reveals order at the nanoscale, typically not the case for thermoresponsive gold nanoparticles coated with lower or upper critical solution temperature polymers. A further novelty is the result of selective binding of calcium ions to the PEO in the fluid state: a reversible thermoresponsive transition become irreversible.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号