首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unique optical properties of Tamm plasmons (TPs) – such as flexible wavevector matching conditions including inplane wavevector within the light line, and existing both S‐ and P‐polarized TPs − facilitate them for direct optical excitation. The Tamm plasmon‐coupled emission (TPCE) from a combined photonic–plasmonic structure sustaining both surface plasmons (SPs) and TPs is described in this paper. The sensitivity of TPCE to the emission wavelength and polarization is examined with back focal plane imaging and verified with the numerical calculations. The results reveal that the excited probe can couple with both TPs and SPs, resulting in surface plasmon‐coupled emission (SPCE) and TPCE, respectively. The TPCE angle is strongly dependent on the wavelength allowing for spectral resolution using different observation angles. These Tamm structures provide a new tool to control the optical emission from dye molecules and have many potential applications in fluorescence‐based sensing and imaging.  相似文献   

2.
为了降低功耗、实现超快速响应,设计了一种基于双矩形腔边耦合等离子体波导系统,并研究了其等离子体诱导透明效应.采用光学Kerr效应超快调控石墨烯-Ag复合材料波导结构,实现1 ps量级的超快响应时间.动态调控等离子体波导的传输相移,当泵浦光强为5.83 MW/cm^2时,等离子体诱导透明系统能够实现透射光谱π相移,这是因为基于石墨烯-Ag复合材料结构等离子体波导具有大的等效光学Kerr非线性系数,表面等离子体激元局域光场和等离子体诱导透明效应慢光对光学Kerr效应产生了协同增强作用,大大降低了系统获得透射光谱π相移的泵浦光强.等离子体诱导透明效应透明窗口的可调谐带宽为40 nm,系统的群延时控制在0.15 ps到0.85 ps之间,并且光波通过间接耦合或者相位耦合机制实现了等离子体诱导透明效应相移倍增效应.耦合模式理论计算结果很好地吻合了时域有限差分法仿真模拟结果,研究结果对于低功耗、超快速非线性响应和紧凑型光子器件的设计和制作具有一定的参考意义.  相似文献   

3.
We present an overview of the optical properties of nonlinear surface plasmon polaritonic crystals and their applications to control light with light. Surface plasmon polaritonic crystals are periodically nanostructured metal surfaces or thin metal films that act as two‐dimensional photonic crystals for surface polaritons. Hybritization of such nanostructures with dielectrics exhibiting an optical nonlinear response allows utilization of the electromagnetic field enhancement effects to observe nonlinear effects and bistable behaviour at low light intensities. By changing the geometry of the nanostructured film, the dispersion of the crystal is modified and, thus, electromagnetic mode structure and associated density of states can be controllably tuned in the desired spectral range. This provides enhanced flexibility in engineering the nonlinear optical response of plasmonic crystals in a chosen spectral range for both control and signal wavelengths.  相似文献   

4.
A novel plasmonic structure consisting of three nano-scaled slits coupled by nano-disk-shaped nanocavities is pro- posed to produce subwavelength focusing and beam bending at optical frequencies. The incident light passes through the metal slits in the form of surface plasmon polaritons (SPPs) ,and then scatters into radiation fields. Numerical simulations using finite-difference time-domain (FDTD) method show that the transmitted fields through the design example can gener- ate light focusing and deflection by altering the refractive index of the coupled nanocavity. The simulation results indicate that the focal spot is beyond the diffraction limit. Light impinges on the surface at an angle to the optical axis will add an extra planar phase front that interferes with the asymmetric phase front of the plasmonic lens, leading to a larger bending angle off the axial direction. The advantages of the proposed plasmonic lens are smaller device size and ease of fabrication. Such geometries offer the potential to be controlled by using nano-positior!i0g systems for applications in dynamic beam shaping and scanning on the nanoscale.  相似文献   

5.
The plasmonic properties in coupled metallic nanotube arrays are investigated theoretically by the finite-difference time-domain (FDTD) method. We calculate the transmission spectra and the electric field distributions. We show that there is a photonic band gap over a wide optical wavelength range and the transmission spectrum depends strongly on the inner radii, the separation distance and the number of the nanotubes. Based on the localized nature of the field distribution, we also clearly show that the presence of local plasmon resonant modes that originate from multipolar plasmon polaritons and a big magnitude of opposing surface charges build up in the gap between adjacent nanotubes.  相似文献   

6.
Although silver nanowires as plasmonic components have been investigated extensively in both theoretical and experimental studies, a systematic study is still lacking. In this work, a review is given to explain some basic features of experimentally prepared nanowires and their optical properties in different situations, such as waveguides, resonators, and antennas. The review also lists several possible applications of nanowires for enhanced light‐emitting, photonic device fabrication, sensors, lasers, and nonlinear optics. Combined with the merits of both nanowires and surface plasmon polaritons, silver nanowires are certain to show their potential in photonics in the near future.  相似文献   

7.
Surface plasmon propagating modes supported by metal/dielectric interfaces in various configurations can be used for radiation guiding similarly to conventional dielectric waveguides. Plasmonic waveguides offer two attractive features: subdiffraction mode confinement and the presence of conducting elements at the mode‐field maximum. The first feature can be exploited to realize ultrahigh density of nanophotonics components, whereas the second feature enables the development of dynamic components controlling the plasmon propagation with ultralow signals, minimizing heat dissipation in switching elements. While the first feature is yet to be brought close to the domain of practical applications because of high propagation losses, the second one is already being investigated for bringing down power requirements in optical communication systems. In this review, the latest application‐oriented research on radiation modulation and routing using thermo‐optic dielectric‐loaded plasmonic waveguide components integrated with silicon‐based photonic waveguides is overviewed. Their employment under conditions of real telecommunications is addressed, highlighting challenges and perspectives.  相似文献   

8.
HW Lee  MA Schmidt  PS Russell 《Optics letters》2012,37(14):2946-2948
A pair of gold nanowires, incorporated into a photonic crystal fiber, acts as a plasmonic "molecule." Hybridized modes are excited at specific wavelengths by launching light into the glass core. The formation of bonding and antibonding solutions results in a modal splitting of more than 100 nm, even though the spatial separation between the wires is larger than 3 μm. The study provides insight into multiwire plasmonic devices with applications as polarizers or filters in near-field optics, nonlinear plasmonics, optical sensing, and telecommunications.  相似文献   

9.
The electromagnetic propagation in a relativistic electron gas at finite temperatures and carrier densities is described. Using quantum electrodynamics at finite temperatures, electric and magnetic responses and general constitutive relations are obtained. Rewriting the propagator for the electromagnetic field in terms of the electric and magnetic responses, the modes that propagate in the gas are identified. As expected, the usual collective excitations are obtained, i.e., a longitudinal electric and two transverse magnetic plasmonic modes. In addition, a purely photonic mode is found, which satisfies the wave equation in vacuum, for which the electron gas is transparent. Dispersion relations for the plasmon modes at zero and finite temperatures are presented and the intervals of frequency and wavelength where both electric and magnetic responses are simultaneously negative are identified, a behavior previously thought not to occur in natural systems. The investigation of the electromagnetic responses of a relativistic electron gas shows that, apart from the usual longitudinal electric plasmon mode and the two transverse magnetic plasmon modes, there is also a pure photonic mode that propagates with the speed of light, as if the medium were transparent. Furthermore, there is a region of frequencies and wavenumbers of the external fields where both the longitudinal electric permittivity and magnetic permeability are simultaneously negative, a property found in artificially constructed metamaterials.  相似文献   

10.
In this Letter, we report on dark field imaging of localized surface plasmon polaritons (SPPs) in plasmonic waveguiding bands formed by plasmonic coupled cavities. We image the light scattered from SPPs in the plasmonic cavities excited by a tunable light source. Tuning the excitation wavelength, we measure the localization and dispersion of the plasmonic cavity mode. Dark field imaging has been achieved in the Kretschmann configuration using a supercontinuum white-light laser equipped with an acoustooptic tunable filter. Polarization dependent spectroscopic reflection and dark field imaging measurements are correlated and found to be in agreement with finite-difference time-domain calculations.  相似文献   

11.
The development of simple to prepare, polarization‐sensitive plasmonic apertures with two plasmonic modes, is described. To achieve these results, monocrystalline nanosphere lithography masks of 438 nm polystyrene spheres are modified with reactive ion etching before silver is subsequently evaporated through the mask at varied angles. As the angle of evaporation increases, round apertures, elliptical apertures or lines with bow‐tie like features between two lines are produced. A primary plasmon mode is shown at 570 nm, while a tunable plasmon mode is demonstrated between 700 nm and 900 nm. Finite‐difference time‐domain calculations agree with the observed results and predict that this method of fabrication can produce tunable plasmonic features throughout the NIR optical telecommunication wavelength range. Lastly, the excitation polarization angle is compared with that of plasmonic nanorods and asymmetric nano‐apertures systems to describe why the excitation polarization of the low energy mode is orthogonal to the long axis of the apertures. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

12.
Metal films deposited over two-dimensional colloidal crystals (MFoCC) constitute a low-cost periodic structure with interesting photonic and plasmonic properties. It has previously been shown that this structure exhibits a behaviour similar to the well-known Extraordinary Optical Transmission (EOT) of metallic hole arrays in planar films. Here, we explore the transmission characteristics of AgFoCC by systematic comparison with that of the bare CC. Furthermore with additional reflectivity measurements we evaluate the AgFoCC overall plasmonic response, which, notably, exhibits a strong plasmon absorption band at wavelengths larger than those of the transmitted maximum. By corroborating these results with finite-difference time-domain electromagnetic simulations, we identify a hybrid metal-dielectric propagative mode in the transmission mechanism. On the contrary a strongly localized mode is responsible for the maximum light absorption by this structure. These results shed new light on the current understanding of this highly promising plasmonic structure, being useful for the design of surface-enhanced Raman scattering and enhanced fluorescence substrates.  相似文献   

13.
Leaky modes are below‐cutoff waveguide modes that lose part of their energy to the continuum of radiation modes during propagation. In photonic nanowire lasers, leaky modes have to compete with almost lossless above‐cutoff modes and are therefore usually prevented from crossing the lasing threshold. The situation is drastically different in plasmonic nanowire systems where the above‐cutoff plasmonic modes are very lossy because of their strong confinement to the metal surface. Due to gain guiding, the threshold gain of the hybrid electric leaky mode does not increase strongly with reduced wire diameter and stays below that of all other modes, making it possible to observe leaky‐mode lasing. Plasmonic ZnO nanowire lasers operating in the gain‐guided regime could be used as coherent sources of surface plasmon polaritons at the nanoscale or as surface plasmon emitting diodes with an emission angle that depends on the nanowire diameter and the color of the surface plasmon polariton.

  相似文献   


14.
Transport of subwavelength electromagnetic (EM) energy has been achieved through near‐field coupling of highly confined surface EM modes supported by plasmonic nanoparticles, in a configuration usually on a two‐dimensional (2D) substrate. Vertical transport of similar modes along the third dimension, on the other hand, can bring more flexibility in designs of functional photonic devices, but this phenomenon has not been observed in reality. In this paper, designer (or spoof) surface plasmon resonators (‘plasmonic meta‐atoms’) are stacked in the direction vertical to their individual planes in demonstrating vertical transport of subwavelength localized surface EM modes. The dispersion relation of this vertical transport is determined from coupled‐mode theory and is verified with a near‐field transmission spectrum and field mapping with a microwave near‐field scanning stage. This work extends the near‐field coupled resonator optical waveguide (CROW) theory into the vertical direction, and may find applications in novel three‐dimensional slow‐light structures, filters, and photonic circuits.

  相似文献   


15.
For the miniaturization of optical devices, surface plasmon polaritons (SPPs) have been widely utilized due to their outstanding confinement and field‐enhancement characteristics. Analyzing a spectrum of optical signals and splitting certain regions of the spectrum range within a submicrometer‐scale structure are demanded for optical integrated systems. In this paper, a novel type of dichroic surface plasmon launcher that can switch the launching direction according to incident polarization states is demonstrated. Compared to the previously reported plasmonic dichroic splitters, the proposed schemes do not use any asymmetric geometry for directional launching. Hence, the direction of guided SPPs can be interchanged according to the polarization state. Such characteristics will be helpful to design switchable plasmonic devices that can be applied to active plasmonic integrated circuits.  相似文献   

16.
李明  陈阳  郭光灿  任希锋 《物理学报》2017,66(14):144202-144202
近年来表面等离激元得到了越来越多的关注和研究,得益于其能把电磁场束缚在金属-介质界面附近的亚波长尺度范围内.本文回顾了近年来表面等离激元在量子信息领域中的理论和实验研究,包括表面等离激元的基本量子性质、表面等离激元量子回路、在量子尺度下与物质的相互作用及其潜在应用.量子表面等离激元开辟了对表面等离激元基本物理性质研究的新方向,可以应用于高度集成化的量子集成光学回路,同时也可以用来增强光与量子发光体的相互作用.  相似文献   

17.
Li L  Li T  Wang SM  Zhang C  Zhu SN 《Physical review letters》2011,107(12):126804
We report an experimental realization of a plasmonic Airy beam, which is generated thoroughly on a silver surface. With a carefully designed nanoarray structure, such Airy beams come into being from an in-plane propagating surface plasmon polariton wave, exhibiting nonspreading, self-bending, and self-healing properties. Besides, a new phase-tuning method based on nonperfectly matched diffraction processes is proposed to generate and modulate the beam almost at will. This unique plasmonic Airy beam as well as the generation method would significantly promote the evolutions in in-plane surface plasmon polariton manipulations and indicate potential applications in lab-on-chip photonic integrations.  相似文献   

18.
Hybrid metal-dielectric photonic crystals assembled from an opal film coated by a gold film are designed in order to realize optical spectra that emanate from mixing Bloch modes in the opal and surface plasmon polaritons in corrugated gold films. The photonic crystal provides a spatial template for the gold film profile and modifies the electromagnetic vacuum in the vicinity to the gold layer. Reflectance spectroscopy was applied to deconvolute the plasmonic and photonic bandgap components in the optical response of hybrid crystals as opposite to their mixed appearance in the transmission spectra.  相似文献   

19.
Noble metal nanostructures possess novel optical properties because of their collective electronic oscillations,known as surface plasmons(SPs).The resonance of SPs strongly depends on the material,surrounding environment,as well as the geometry of the nanostructures.Complex metal nanostructures have attracted research interest because of the degree of freedom in tailoring the plasmonic properties for more advanced applications that are unattainable by simple ones.In this review,we discuss the plasmonic properties of several typical types of complex metal nanostructures,that is,electromagnetically coupled nanoparticles(NPs),NPs/metal films,NPs/nanowires(NWs),NWs/NWs,and metal nanostructures supported or coated by dielectrics.The electromagnetic field enhancement and surface-enhanced Raman scattering applications are mainly discussed in the NPs systems where localized SPs have a key role.Propagating surface plasmon polaritons and relevant applications in plasmonic routers and logic gates using NWs network are also reviewed.The effect of dielectric substrates and surroundings of metal nanostructures to the plasmonic properties is also discussed.  相似文献   

20.
The dielectric property of a nanoparticle‐supporting film has recently garnered attention in the fabrication of plasmonic surfaces. A few studies have shown that the localized surface plasmon resonance (LSPR), and hence surface‐enhanced Raman scattering (SERS), strongly depends on the substrate refractive index. In order to create higher efficiency SERS‐active surfaces, it is therefore necessary to consider the substrate property along with nanoparticle morphology. However, due to certain limitations of conventional lithography, it is often not feasible to create well‐defined plasmonic nanoarrays on a substrate of interest. Here, an additive nanofabrication technique, i.e., nanotransfer printing (nTP), is implemented to integrate electron beam lithography (EBL) defined high‐aspect‐ratio nanofeatures on a variety of SERS‐supporting surfaces. With the aid of suitable surface chemistries, a wide range of plasmonic particles were successfully integrated on surfaces of three physically and chemically distinct dielectric materials, namely, polydimethyl siloxane (PDMS), SU‐8 photoresist, and glass surfaces, using silicon‐based relief pillars. These nTP‐created metal nanoparticles strongly amplify the Raman signal and complement the selection of suitable substrates for better SERS enhancement. Our experimental observations are also supported by theoretical calculations. The implementation of nTP to stamp out metal nanoparticles on a multitude conventional/unconventional substrates has novel applications in designing in‐built plasmonic microanalytical devices for SERS sensing and other related photonic studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号