首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With an optimized photonic crystal, the chemiluminescence intensity is enhanced by 44.9 times and the chemiluminescence emission light intensity decay rate is accelerated 3.2 times. The interaction between the chemiluminescence system and the photonic crystal is discussed. The results will exploit a new platform for the photonic crystal based chemiluminescence assay.  相似文献   

2.
Xu X  Yamada T  Ueda R  Otomo A 《Optics letters》2008,33(15):1768-1770
We investigated the dynamics of spontaneous emission from a photonic crystal etched into a SiN slab. After fitting the decay curves of the emission to double exponential functions, we divided the dynamic process of the spontaneous emission into a fast process and a slow process. It was observed that the presence of the photonic crystal increased the proportion of the fast decay component, and consequently, the emission rate and time-integrated emission intensity were also enhanced. These enhancements were a result of the coupling of the guide modes to the leaky modes of the photonic crystal slab waveguide.  相似文献   

3.
Recently, in papers [1, 2] were described the effect of long-time emission of photonic crystal (synthetic opals) under the action of nanosecond laser pulse. The duration of the luminescence is of the order of seconds. Despite on the other phenomena, which were considered in these papers, below we focus our attention on possible explanation of long time emission from nonlinear photonic crystal. The basis of our consideration is papers [3, 4], those deal with soliton formation in several layers of 1D nonlinear photonic crystal. Because of this, the light wave can exist in photonic crystal a long time (in ideal case—infinite time interval). Taking into account a relation between soliton duration and its maximum intensity, the leaving of laser energy from the layer of photonic crystal takes place due not full reflection from boundaries of layer. The time of light emission for this case depends on nonlinear susceptibility of photonic crystal and the intensity of laser pulse. Hence, soliton formation inside the nonlinear elements of photonic crystal can be one of the reasons of long time emission. We got in computer simulation a long time emission of 1D (layered) and 2D (circular or rectangular elements) nonlinear photonic crystal under the action of laser pulse with femtosecond duration under the conditions of soliton formation in some elements of photonic crystal. Input intensity of laser pulse, at which a soliton appears in nonlinear photonic crystal, can be ten times less due to effects of enhancement of optical intensity in periodic structure [4, 5].  相似文献   

4.
Smith-Purcell radiation from a charge running near a photonic crystal is calculated for a slab system of a periodic array of dielectric spheres, with the photonic band effect taken into account exactly. The radiation spectrum has a series of resonantly enhanced structures, which are shown to arise accompanying the excitation of the photonic bands. It is also shown that the overall intensity of the emission band does not depend very strongly on the slab thickness but the height of the resonant peaks increases progressively with thickness due to the enhanced Q value of excited photonic bands.  相似文献   

5.
The image depicts a silicon photonic crystal nanocavity light emitting diode, which operates in the 1300–1600 nm wavelength range. The emission is based on defect luminescence. The optically active defects, shown in the inset, are created by hydrogen plasma treatment. The emission from these defects is strongly enhanced by the photonic crystal cavity. (Picture: A. Shakoor et al. 10.1002/lpor.201200043 , pp. 114–121, in this issue)  相似文献   

6.
We have studied absorption and thermal radiation for a three dimensional lossy photonic crystal of dielectric spheres by using a multiple scattering method. It is shown that such simple structures have excellent selective thermal radiative characteristics in different photonic bands. There is stronger thermal radiation at high frequency than that at low frequency. In comparison with the uniform slab without photonic crystal structure, in the photonic band gap, the thermal emission intensity is greatly suppressed and very weak, but not zero due to the penetration depth. Under the same lattice structure, the thermal emission of photonic crystal varies with the change of the radius of the spheres.  相似文献   

7.
Energy transfer between fluorescent dyes in photonic crystals   总被引:1,自引:0,他引:1  
Yang Z  Zhou X  Huang X  Zhou J  Yang G  Xie Q  Sun L  Li B 《Optics letters》2008,33(17):1963-1965
Energy transfer from fluorescein (Fl) to Rhodamine B (RhB) in the opal photonic crystals has been investigated by photoluminescence. The results show that the energy transfer can be enhanced effectively by photonic bandgaps. When the fluorescence emission wavelength of donor Fl overlaps the photonic bandgap the fluorescence intensity of the donor is suppressed, while the fluorescence intensity of acceptor RhB is obviously enhanced. This enhancement can be attributed to the inhibition of radiative emission of the donor in the photonic crystals.  相似文献   

8.
We present a light emitting diode with a two-dimensional photonic crystal structure prepared by interference lithography at the light emitting diode surface. The emission maximum is at 850 nm. The two-dimensional photonic crystal structure enhanced the light extraction efficiency by a factor of 1.39. The photonic crystal light emitting diode surface morphology was analyzed by atomic force microscopy. The enhanced extraction efficiency of the photonic crystal diode was documented from L(I) dependencies and was confirmed by near-field studies.  相似文献   

9.
We calculated the local density of state for various positions in a photonic crystal of honeycomb lattice to study how the spontaneous emission rate of a radiating dipole is altered in the presence of the photonic crystal. The local density of states is found to be position-sensitive and its value can be enhanced or depressed relative to the density of states, depending on the location of the dipole. Our study shows that the density of states tends to underestimate the effect of a photonic crystal on the prohibition of light propagation, while on the contrary tends to overestimate the effect on the enhancement of light emission. The calculations also indicate that it is possible to tailor the spontaneous emission of an active medium by careful selecting its location in the photonic crystal. The results are helpful in determining the insertion location of the active medium and in evaluating the efficiency of active photonic crystal devices such as light-emitting diodes or lasers.  相似文献   

10.
光子晶体对nc-Ge/Si岛发光增强的模拟   总被引:3,自引:3,他引:0       下载免费PDF全文
唐海侠  王启明 《发光学报》2006,27(4):435-441
在Si基集成光电子学的发展中,高效的Si基光源是人们不懈追求的目标。但是Si材料的间接带隙特性导致其发光效率低,更谈不上受激发射。于是人们探索了多种Si基材料体系来提高Si材料的发光效率,并在不同程度上取得了重要的进展。在众多的Si基发光材料体系中,Ge/Si量子点材料,不仅生长工艺与标准的CMOS工艺有很好的兼容性,而且发光波长能够覆盖重要的光通信波段即1.3~1.55μm,因此成为实现Si基发光器件的重要途径之一。但是目前这种材料的发光效率仍很低,所以提高其发光效率自然成为人们关注的焦点。如果将光子晶体引入到nc-Ge/Si材料中,它不仅可以改变材料本身的自发发射特性,而且可以改变发射的光子的提取效率,从而使材料的发光效率得到增强。提出了在Ge/Si量子点材料中引入光子晶体结构来提高其发光效率,包括光子晶体点缺陷腔结构和带边模式工作的完整光子晶体结构,并从理论上分析了发光效率提高的原理。针对发光波长在1.5μm附近的材料结构,模拟出了相应的光子晶体的结构参数。从模拟结果可以看出,对于缺陷腔的光子晶体结构,采用单点缺陷微腔很好地实现了单模运作,但是微腔内有源材料的体积很小,因此得到的发光效率很低。而采用耦合缺陷腔的结构和H2腔都增加了腔内有源区的体积。但是耦合腔与H2腔相比,谐振腔模减少,主谐振模式的峰值强度增加,更容易实现单模发光。因而更适用于提高nc-Ge/Si的发光效率。而带边模式工作的光子晶体结构,尺寸较大,不需引入缺陷,工艺上更容易实现。  相似文献   

11.
利用耦合波导列提高光子晶体波导辐射   总被引:1,自引:0,他引:1       下载免费PDF全文
将耦合波导列应用于光子晶体单模波导,提出一种提高光辐射的光子晶体结构. 基于时域有限差分方法的理论研究表明,当将耦合波导列附加到单模光子晶体波导出口端的适当位置,使出射光分成若干强弱不一的光束,这些光束在传播空间通过干涉形成一定程度的汇聚,大大提高了光子晶体波导在水平方向的光辐射效率. 另外,当耦合波导列的行数大于某固定值(2N=8)时,辐射质量基本保持不变,由此可获得最紧凑的器件结构. 这种类型光子晶体在近场光学和集成光学等诸多方面有潜在的应用价值. 关键词: 光子晶体波导 光辐射 波导列 耦合波导  相似文献   

12.
In this work, a highly effective white light-emitting diode (LED) system is realized by a combination of an LED and a photonic crystal (PC-) structured luminous film. The emission intensity of the PC-structured luminous film emission is enhanced by a factor of ca. 10.6 compared with that of the planar film. The light from the system can give rise to an intense white emission with CIE coordinates (0.33, 0.38). The total emission intensity is over twice greater than that of the usual LED system. Additionally, the emission of the PC-structured films can be switched flexibly. The strategy proposes an efficient and facile method for high excitation and extraction of the luminous film, and it shows great potential for a bright white lighting with excellent colour matching.  相似文献   

13.
Secondary emission spectra of globular silica photonic crystals when their surfaces were exposed to laser pulses 250 fs long at a power density to 1 TW/cm2 have been studied. Optical harmonics and plasma emission were detected in this case. For the opal matrix containing pores filled with air, in the reflection mode, the third optical harmonic with a conversion efficiency of ~10% arises. The highest conversion efficiency for exciting radiation with wavelengths of 1026 or 513 nm is implemented when the frequencies of the exciting radiation or the second harmonic are near the stop band edge. In globular photonic crystals filled with sodium nitrite or barium titanate ferroelectrics, the second optical harmonic is observed. The exciting radiation conversion efficiency to the second optical harmonic was a few percent and depended on the frequency of exciting radiation and photonic crystal globule diameters. It is found that the plasma emission intensity increases with the exciting radiation power density. The dependences of the intensity of the second and third optical harmonics on the pump intensity are constructed for various photonic crystal globule diameters.  相似文献   

14.
We present time-resolved spontaneous emission measurements of single quantum dots embedded in photonic crystal waveguides. Quantum dots that couple to a photonic crystal waveguide are found to decay up to 27 times faster than uncoupled quantum dots. From these measurements beta-factors of up to 0.89 are derived, and an unprecedented large bandwidth of 20 nm is demonstrated. This shows the promising potential of photonic crystal waveguides for efficient single-photon sources. The scaled frequency range over which the enhancement is observed is in excellent agreement with recent theoretical proposals taking into account that the light-matter coupling is strongly enhanced due to the significant slow-down of light in the photonic crystal waveguides.  相似文献   

15.
We investigate for the first time, to our knowledge, the enhancement of the stimulated Raman scattering in slow-light silicon-on-insulator (SOI) photonic crystal line defect waveguides. By applying the Bloch-Floquet formalism to the guided modes in a planar photonic crystal, we develop a formalism that relates the intensity of the downshifted Stokes signal to the pump intensity and the modal group velocities. The formalism is then applied to two prospective schemes for enhanced stimulated Raman generation in slow-light photonic crystal waveguides. The results demonstrate a maximum factor of 104(66,000) enhancement with respect to SOI channel waveguides.  相似文献   

16.
Lin SY  Fleming JG  El-Kady I 《Optics letters》2003,28(20):1909-1911
A three-dimensional tungsten photonic crystal is thermally excited and shown to emit light at a narrow band, lambda = 3.3-4.25 microm. The emission is experimentally observed to exceed that of the free-space Planck radiation over a wide temperature range, T = 475-850 K. It is proposed that an enhanced density of state associated with the propagating electromagnetic Bloch waves in the photonic crystal is responsible for this experimental finding.  相似文献   

17.
驱动场作用下光子晶体中三能级原子的自发发射   总被引:2,自引:2,他引:0       下载免费PDF全文
谢双媛  羊亚平  林志新  吴翔 《物理学报》1999,48(8):1459-1469
讨论了在双光子驱动场作用下,三能级原子在光子晶体中的自发发射问题.由于量子干涉和光的局域化作用,两个上能级中的占据数将具有周期振荡或准周期振荡的性质,这不仅依赖于两个上能级与禁带的相对位置,同时也依赖于原子的初始状态,而且还与驱动场的强度、驱动场的入射位相有关.这些性质既与真空中带有驱动场的原子的自发发射性质不同,也有别于无驱动场作用下光子晶体中三能级原子的自发发射性质. 关键词:  相似文献   

18.
We present measurements of the thermal emission properties of 2D and 3D silicon photonic crystals with and without substrate heated resistively as well as passively with an aluminium hotplate. The out-of-plane and in-plane emission properties were recorded and compared to numerical simulation. It turned out that for the in-plane 2D photonic crystal and out-of-plane 3D photonic crystal emission a photonic stop gap effect is visible. For the out-of-plane 2D photonic crystal emission, no photonic bandgap effect is observable but instead strong silicon oxide emission from native oxide inside the pores of silicon are observable. A model for the modified thermal emission is presented.  相似文献   

19.
A classical simulation of equilibrium thermal emissivity from dispersive, lossy photonic crystals is presented. Normal emission results consistent with those assuming Kirchoff's law are obtained; i.e., a photonic crystal does not emit more than what a blackbody does. Significant enhancement, however, can be achieved over the radiation intensity from a uniform slab, indicating the potential usefulness of photonic crystals in incandescent lighting and thermal photovoltaic applications.  相似文献   

20.
Hughes S 《Optics letters》2005,30(11):1393-1395
A theoretical quantum-optical study of the modified spontaneous emission dynamics from a single quantum dot in a photonic crystal nanocavity is presented. By use of a photon Green function technique, enhanced single-photon emission and pronounced vacuum Rabi flops are demonstrated, in qualitative agreement with recent experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号