首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nickel α‐diimine catalyst was used for Grignard metathesis (GRIM) polymerization of 2,5‐dibromo 3‐hexylthiophene and 2‐bromo‐5‐iodo‐3‐hexylthiophene monomers. GRIM polymerization of 2‐bromo‐5‐iodo‐3‐hexylthiophene generated regioregular polymers with molecular weights ranging from 3 000 to 12 000 g · mol−1. The nickel α‐diimine catalyst was also successfully used for the GRIM polymerization of a bulky benzodithiophene monomer.

  相似文献   


2.
Poly(3‐hexylthiophene)‐b‐poly(γ‐benzyl‐L ‐glutamate) (P3HT‐b‐PBLG) rod–rod diblock copolymer was synthesized by a ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride using a benzylamine‐terminated regioregular P3HT macroinitiator. The opto‐electronic properties of the diblock copolymer have been investigated. The P3HT precursor and the P3HT‐b‐PBLG have similar UV–Vis spectra both in solution and solid state, indicating that the presence of PBLG block does not decrease the effective conjugation length of the semiconducting polythiophene segment. The copolymer displays solvatochromic behavior in THF/water mixtures. The morphology of the diblock copolymer depends upon the solvent used for film casting and annealing results in morphological changes for both films deposited from chloroform and trichlorobenzene.

  相似文献   


3.
In this study, we have synthesized highly photoluminescent TiO2/poly (phenylene vinylene) (PPV) hybrid nanoparticle‐polymer fibers by electrospinning a PPV precursor added to a TiO2 sol‐gel solution. The diameters of the hybrid fibers ranged from 100–300 nm and the average size of TiO2 nanoparticles within the fibers was 10–60 nm. FT‐IR analysis indicated that a new band around 1 632 cm−1 assigned to the Ti O C vibration appeared, which resulted in the stronger luminance of the fluorescence of the TiO2/PPV hybrid fibers compared to free standing PPV nanofibers.

  相似文献   


4.
A two‐armed polymer with a crown ether core self‐assembles to produce macroporous films with pores perpendicularly reaching through the film down to the substrate. A possible assembling mechanism is discussed. The pore size can be conveniently adjusted by changing the solution concentration. These through‐hole macroporous films provide a template for fabricating an array of Cu nanoparticle aggregates.

  相似文献   


5.
Poly(para‐phenylene vinylene) (PPV) and its derivatives are important semiconducting polymers for organic electronics. Herein, an alkene metathesis approach to obtain PPVs is reported. Tri(iso propyl)silyl‐substituted norbornadienes are employed as solubilizing agents. As PPV precursors divinylbenzene is used for acyclic diene metathesis and paracyclophane diene for a ring‐opening metathesis polymerization‐type approach. The resulting polymers are analyzed by gel permeation chromatography (GPC), UV‐vis, fluorescence, and nuclear magnetic resonance (NMR) spectroscopy. All of the polymers show good solubility in common solvents.

  相似文献   


6.
A new versatile synthesis strategy for macromonomers has been developed that uses the living ring‐opening metathesis polymerization (ROMP) with commercial Grubbs first generation ruthenium initiators. Homopolymers as well as diblock copolymers were end‐functionalized with norbornene derivatives to serve as macromonomers. The graft copolymerization of the macromonomers was also carried out employing ROMP. Well‐defined and highly functional graft copolymers are accessible by this new synthetic route.

  相似文献   


7.
Oxygen is shown to act as an efficient molar‐mass regulating agent in Gilch syntheses of PPV. As a scavenger, it undergoes instantaneous recombination with the initiating diradicals as soon as they appear in the system. Regular polymer formation can only start when all oxygen has been used, proceeding predominantly as chain‐growth polymerization of the p‐quinodimethane monomers. Since all radical species involved in this Gilch process are diradicals, some polyrecombination events occur in parallel. Therefore the initially formed peroxy diradicals are also incorporated into the resulting chains. Later, they break under very mild conditions, thereby causing a systematic decrease of the final molar mass of PPV.

  相似文献   


8.
Summary: The fabrication of polymer diodes on a glass substrate by an ink‐jet printing technique is reported. Both an n‐type semiconductive polymer, poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐(1‐cyanovinylene)phenylene] (CN‐PPV), and a p‐type semiconductive polymer, polypyrrole (PPy) or poly(3,4‐ethylenedioxythiophene) (PEDOT), were printed through a piezoelectric ink‐jet printer. The printed CN‐PPV/PPy and CN‐PPV/PEDOT diodes showed good rectifying characteristics. These results indicate the potential of the low‐cost ink‐jet printing technique to produce polymer microelectronic devices and circuits.

Schematic diagram of the printed polymer diode  相似文献   


9.
High molecular weight tri‐ and tetrablock copolymers were synthesized from the commercially available Grubbs first generation catalyst for the first time. These polymers had degrees of polymerization from 430 to 1 100, molecular weights up to 419 000 g · mol−1, and narrow polydispersities. Oxanorbornene monomers were chosen due to their fast rates of polymerization and slow rates of cross metathesis. Polystyrene arms were grown from selected blocks by atom transfer radical polymerization to yield architecturally complex comb tri‐ and tetrablock copolymers. These polymers self‐assembled in the solid state into ordered morphologies that were characterized by scanning electron microscopy.

  相似文献   


10.
Combinations of synthetic and natural macromolecules offer a route to new functional materials. While biological and polymer chemistry may not be natural bedfellows, many researchers are focusing their attention on the benefits of combining these fields. Recent advances in living radical polymerization have provided methods to build tailor‐made macromolecular moieties using relatively simple processes. This has led to a plethora of block copolymers, end‐functional polymers and polymers with a whole range of biological recognition abilities. This review covers work carried out until late 2006 combining living radical polymerization with proteins and peptides in the rapidly‐expanding field of bioconjugation.

  相似文献   


11.
Summary: A chiral, regioregular poly[3‐(4‐alkoxyphenyl)thiophene] has been prepared and studied. Films prepared by fast evaporation of the solvent, consist of random‐coils, while films prepared by slow evaporation are composed of chirally aggregated, coplanar strands. Heat treatment transforms the random‐coils into aggregated films via an intermediate state, which was characterized as chiral, coplanar, unaggregated polymer strands.

Overview of the possible aggregation processes.  相似文献   


12.
Surface initiated living‐radical polymerization (SIP) based on dithiocarbamate iniferters has been used to create molecularly imprinted core‐shell (CS) nanoparticles. Using this approach, propranolol, morphine and naproxen have been successfully imprinted in particle shells (the latter could not be imprinted using conventional aqueous‐based CS methods). Rebinding properties of the imprinted particles appear to be similar to those made by alternative methods. The living radical initiation mechanism makes it possible to build complex multi‐layer particles sequentially. As a demonstration, multi‐layer propranolol‐imprinted particles were generated. Two additional functional shells were grown over the imprinted shell, while the propranolol binding was retained, albeit at a reduced level.

  相似文献   


13.
This study describes the use of diphenyliodonium salts with highly nucleophilic counter anions to photoinitiate the cationic cross‐linking of divinyl ethers. Both direct and indirect initiating modes are used. In the direct acting system, only a diphenyliodonium salt with a highly nucleophilic counter anion and a zinc halide are employed as initiator and activator, respectively. In the indirect systems, in addition to direct system components, photosensitive additives such as anthrecene, perylene, 2,2‐dimethoxy‐2‐phenyl acetophenone, benzophenone, and thioxanthone, which absorb the energy of the incident light and activate the iodonium salt, are used to initiate polymerization. All systems employed in this study initiated quite vigorous polymerizations.

  相似文献   


14.
Well‐defined amphiphilic block‐graft copolymers PCL‐b‐[DTC‐co‐(MTC‐mPEG)] with polyethylene glycol methyl ether pendant chains were designed and synthesized. First, monohydroxyl‐terminated macroinitiators PCL‐OH were prepared. Then, ring‐opening copolymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and cyclic carbonate‐terminated PEG (MTC‐mPEG) macromonomer was carried out in the presence of the macroinitiator in bulk to give the target copolymers. All the polymers were characterized by 1H NMR and gel permeation chromatography (GPC). The polymers have unimodal molecular weight distributions and moderate polydispersity indexes. The amphiphilic block‐graft copolymers self‐assemble in water forming stable micelle solutions with a narrow size distribution.

  相似文献   


15.
The nucleophilic living ring‐opening polymerization of N‐substituted glycine N‐carboxyanhydrides using solid‐phase synthesis resins is reported. By variation of experimental parameters, products with near Poisson distributions are obtained. As opposed to reversible deactivation radical polymerization, the living polymerization is demonstrated to be viable to high monomer conversion and through multiple monomer addition steps. Successful preparation of a multiblock copolypeptoid is proof for a highly living and robust character of the solid‐phase peptoid polymerization.

  相似文献   


16.
2,5‐Bis(chloromethyl)‐1,3,4‐oxadiazole was synthesized and dehydrohalogenation of this model compound was investigated under various base conditions. The formation of an intermediate with quinodimethane‐type structure is suggested for reaction in EtONa/EtOH. Polymerization of this intermediate proceeds via an anionic mechanism to form poly(1,3,4‐oxadiazole‐2,5‐diyl‐1,2‐vinylene). Polymerization at a toluene/water interface results in shorter polymerization times, milder conditions, higher molecular weights, higher yields and fewer defects in the polymer as compared to the corresponding polycondensation route.

  相似文献   


17.
ε‐Caprolactone (CL) was enzymatically polymerized with 2‐mercaptoethanol as the initiator, both in an oil bath and under microwave (MW) irradiation. The polymerization performed under MW irradiation maintaining equal conditions led to higher yields and less formation of side products, i.e., a higher chemoselectivity was observed. The resulting polyester with a terminal  SH moiety had a of 3 600 g · mol−1, determined by size exclusion chromatography (SEC), and was used as a chain transfer reagent. Subsequent copolymerization with styrene in different ratios led to polycaprolactone‐block‐polystyrene. SEC analysis and polarization microscopy of crystallized samples with different styrene contents proved the formation of block copolymers.

  相似文献   


18.
Summary: We propose and demonstrate the utility of an interfacial living/controlled (reversible addition fragmentation chain transfer, RAFT) radical miniemulsion polymerization in nano‐encapsulation. The principles and methodology behind this technique are readily scalable and highly efficient. The living/controlled nature of the system offers great opportunities to tune the properties of the polymer shell‐like thickness, surface functionality, molecular weight, and inner‐wall functionality by simply using a semi‐continuous polymerization technique.

Illustration of encapsulation principles by RAFT interfacial miniemulsion polymerization.  相似文献   


19.
A hybrid inorganic–polymer nanocomposite using CdSe nanocrystals with high electron mobility has been successfully synthesized by atom transfer radical polymerization (ATRP). First the hydroxyl‐coated CdSe nanoparticles (i.e., CdSe–OH) were prepared via a wet chemical route. A polymerization initiator was then prepared for ATRP of N‐vinylcarbazole. FT‐IR, 1H NMR, and XRD analyses confirmed the successful synthesis of CdSe–poly(N‐vinylcarbazole) (PVK) nanohybrid. UV–Vis spectra and photoluminescence data revealed that grafting of PVK onto the surface of CdSe nanocrystals would reduce the band gap of PVK and cause the red shift of emission peak. TEM and SEM micrographs exhibited CdSe nanoparticles that were well‐coated with PVK polymer.

  相似文献   


20.
Summary: A novel type of glycerol‐derived, water‐soluble polycarbonate with pendant, primary hydroxyl groups was prepared from 2‐(2‐benzyloxyethoxy)trimethylene carbonate (BETC). Ring‐opening polymerization of BETC and 2,2‐dimethyltrimethylene carbonate (DTC) gave narrow distribution of homopolymers or random copolymers with high molecular weights. The protecting benzyl groups were removed by catalyzed hydrogenation at atmosphere H2 pressure to give hydroxyl polycarbonates without observable changes on the polymer backbone and molecular weight distribution. The hydrophilicity of the copolymers increases with the increase in the hydrophilic glycerol‐derived carbonate content.

Synthesis of the glycerol‐derived polycarbonate.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号