首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The high‐resolution stimulated Raman spectra of the ν1/ν5 C–H stretching bands of C2H4 have been recorded and analyzed by means of the tensorial formalism developed in Dijon for X2Y4 asymmetric‐top molecules. A total of 689 lines (428 for ν5 and 261 for ν1) were assigned and fitted as a dyad including Coriolis coupling constants. We obtained a global root mean square deviation of 4.39 × 10− 3 cm− 1 (4.61 × 10− 3 cm− 1 for ν1, 4.25 × 10− 3 cm− 1 for ν5). The nearby 2ν2 band, extrapolated from ν2, was included in the analysis. However, no interaction parameter involving it could be fitted. The analysis is quite satisfactory, although some parts of ν5 are not very well reproduced, probably indicating some yet unidentified resonances. This region is indeed quite dense, with many interacting dark states that cannot be included at present. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The high‐resolution stimulated Raman spectrum of the 2ν10 band located at 1664.16 cm−1 of C2H4 has been reanalyzed, thanks to the tensorial formalism developed in Dijon for X2Y4 asymmetric‐top molecules. A total of 191 lines were assigned and fitted as a single band without including perturbations such as Fermi or Coriolis coupling constants. We obtained a global root mean square deviation of 8.5 × 10−3 cm−1. Further investigations are required to include interactions with the ν2 and ν7 + ν10 bands. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
High‐resolution stimulated Raman spectra of13C2H4 in the regions of the ν2 and ν3 Raman active modes have been recorded at two temperatures (145 and 296 K) based on the quasi continuous‐wave (cw) stimulated Raman spectrometer at Instituto de Estructura de la Materia IEM‐CSIC in Madrid. A tensorial formalism adapted to X2Y4 planar asymmetric tops with D2h symmetry (developed in Dijon) and a program suite called D2hTDS (now part of the XTDS/SPVIEW spectroscopic software) were proposed to analyze and calculate the high‐resolution spectra. A total of 103 and 51 lines corresponding to ν2 and ν3 Raman active modes have been assigned and fitted in wavenumber with a global root mean square deviation of 0.54 × 10−3 and 0.36 × 10−3 cm−1, respectively. Due to the fact that the Raman scattering effect is weak, we did not perform in this contribution the line intensities analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
We present the first high‐resolution stimulated Raman study of osmium tetroxide (OsO4). Lines from the ν1 totally symmetric stretching fundamental have been assigned. These data together with the infrared assignments of the ν3 band previously recorded (M. Louviot et al., J. Quant. Spectrosc. Radiat. Transfer, 2012, 113, 119–127) allowed a refinement of the analysis of the ν1/ν3 stretching dyad. We found that the ν1 band has an unusual positive isotopic shift of approximately 0.32 cm− 1/amu, which gives further evidence that the stretching dyad should be perturbed by a complex nearby bending band polyad. This work is part of a global effort to analyze all fundamental bands of OsO4 to obtain a more precise experimental value of the ground state bond length for this heavy metal‐containing molecule. The result could serve as a benchmark for high‐level quantum chemistry calculations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
6.
The mineral dussertite, a hydroxy‐arsenate mineral with formula BaFe3+3(AsO4)2(OH)5, has been studied by Raman spectroscopy complemented with infrared spectroscopy. The spectra of three minerals from different origins were investigated and proved to be quite similar, although some minor differences were observed. In the Raman spectra of the Czech dussertite, four bands are observed in the 800–950 cm−1 region. The bands are assigned as follows: the band at 902 cm−1 is assigned to the (AsO4)3−ν3 antisymmetric stretching mode, the one at 870 cm−1 to the (AsO4)3−ν1 symmetric stretching mode, and those at 859 and 825 cm−1 to the As‐OM2 + /3+ stretching modes and/or hydroxyl bending modes. Raman bands at 372 and 409 cm−1 are attributed to the ν2 (AsO4)3− bending mode and the two bands at 429 and 474 cm−1 are assigned to the ν4 (AsO4)3− bending mode. An intense band at 3446 cm−1 in the infrared spectrum and a complex set of bands centred upon 3453 cm−1 in the Raman spectrum are attributed to the stretching vibrations of the hydrogen‐bonded (OH) units and/or water units in the mineral structure. The broad infrared band at 3223 cm−1 is assigned to the vibrations of hydrogen‐bonded water molecules. Raman spectroscopy identified Raman bands attributable to (AsO4)3− and (AsO3OH)2− units. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The Raman spectra of liquid carbon disulfide (CS2) diluted with benzene (C6H6) have been measured. By changing the CS2, the concentration, we found an asymmetric wavenumber shift phenomenon. With decreasing concentration of CS2, the position of the ν1 (655 cm−1) band remains practically unchanged, and the 2ν2 (796 cm−1) band shifts toward higher wavenumbers. To interpret this asymmetric wavenumber shift phenomenon of the Fermi doublet ν1 − 2ν2 in the Raman spectra satisfactorily, we propose a modified Bertran model. The values of the Fermi resonance (FR) parameters of CS2 at different concentrations were calculated using the Bertran equations. In addition, we found the fundamental ν2, which should be independent of the FR interaction, shifted to higher wavenumbers as the concentration decreased. This shift was probably driven by the tuning of the FR. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The S3 radical anion is observed in several systems: non‐aqueous polysulfides solutions, doped alkali halides, ultramarine pigments (UP) for which S3 is the blue chromophore and S2 is the yellow one and pigments of zeolite 4A structure. The S3 ion has C2V symmetry, and therefore its three vibrational modes should be observed in the Raman and in IR spectra. In resonance Raman spectroscopy, only the symmetric stretching mode ν1 and the bending mode ν2 have been observed, whereas the anti‐symmetric stretching mode ν3 has never been observed whatever the system. In this work, we confirm that ν3 is not observed in solutions with resonance Raman spectroscopy. However, our investigation of several blue UP, with various concentrations of S2, shows that there is a superposition of two bands at ca 590 cm−1: the first is assigned to ν (S2) and the second to ν3 (S3). With the 457.9 nm excitation line, for which the resonance conditions are simultaneously fulfilled for S2 and S3, the band at ca 590 cm−1 is the sum of the contributions of both ν (S2) and ν3 (S3) vibrations, while, with the 647.1 nm line, which only satisfies the resonance conditions of S3, the band at ca 584 cm−1 must be assigned only to ν3 (S3). Furthermore, ν3 (S3) is observed in green UP and in pigments of zeolite structure. The ν3 vibration of S3, which is observed neither in polysulfide solutions nor in doped alkali halides in resonance Raman conditions, can therefore be observed when this species is inserted into the β‐cages of the sodalite or of the zeolite 4A structures. So, the band at ca 590 cm−1 cannot always be assigned to S2 in these systems. This implies that the concentration of S2 in UP must be reconsidered. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The infrared spectrum of CH2D2 has been recorded in the region of 1345 to 1561 cm?1 with a resolution of 0.030 to 0.026 cm?1. Most of the observed lines have been assigned to transitions of the ν3 band of CH2D2. However, 114 lines have been identified as transitions of the ν2 band of H216O whose band origin has been directly determined to be 1594.7472 ± 0.0030 cm?1. A few weak lines, probably belonging to the ν5 fundamental of CH2D2, remain unassigned. The band center ν = 1435.1326 ± 0.0030 cm?1 and a set of upper state constants were obtained for the ν3 band of CH2D2. Although a slight perturbation was noticed in the ν3 band, all wavenumbers have been fitted with a standard deviation of 3.8 × 10?3 cm?1.  相似文献   

10.
The spectra of the ν1, 2ν1ν1, ν2, 2ν2, and 3ν2ν2 bands of CF4 were obtained with a quasi‐continuous wave stimulated Raman spectrometer. These five bands were studied at a temperature of 135 and 300 K (for the hot bands). The spectrum of ν1 was obtained at a sample pressure of 2 mbar. For the spectra of the other regions, which are much weaker, higher pressures were used. The analysis has been performed thanks to the xtds and spview softwares developed in Dijon for such highly symmetric molecules. Combining the present results with a previous infrared study, we could determine a very accurate value for the C–F equilibrium bond length, i.e. re = 1.31588(6) Å. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The Raman spectrum of the symmetric stretching vibration (ν1) of liquid carbon tetrachloride observed at 295 K and reported repeatedly over the last 80 years clearly shows four of the five more abundant isotopomers at 440–470 cm−1. At the lower energy end of this spectrum, additional intensity due to isotopomeric contributions from the symmetric stretch for v = 1 → 2 (hotbands) partially overlaps the prominent v = 0 → 1 features, and accounts for about 18% of the integrated intensity at 295 K in agreement with theory. When these two patterns are modeled and subtracted from the experimental spectrum, a feature underlying almost exactly the C35Cl4 (v = 0 → 1) band at 462.5 cm−1 becomes apparent. We propose that this feature is the ν3 − ν4 difference band. Observations at lower temperatures, and of the combination bands, and the polarized Raman spectra are consistent with this hypothesis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Raman spectroscopy has been used to study the rare‐earth mineral churchite‐(Y) of formula (Y,REE)(PO4) ·2H2O, where rare‐earth element (REE) is a rare‐earth element. The mineral contains yttrium and, depending on the locality, a range of rare‐earth metals. The Raman spectra of two churchite‐(Y) mineral samples from Jáchymov and Medvědín in the Czech Republic were compared with the Raman spectra of churchite‐(Y) downloaded from the RRUFF data base. The Raman spectra of churchite‐(Y) are characterized by an intense sharp band at 975 cm−1 assigned to the ν1 (PO43−) symmetric stretching mode. A lower intensity band observed at around 1065 cm−1 is attributed to the ν3 (PO43−) antisymmetric stretching mode. The (PO43−) bending modes are observed at 497 cm−12) and 563 cm−14). Some small differences in the band positions between the four churchite‐(Y) samples from four different localities were found. These differences may be ascribed to the different compositions of the churchite‐(Y) minerals. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Magnesium minerals are important for understanding the concept of geosequestration. One method of studying the hydrated hydroxy magnesium carbonate minerals is through vibrational spectroscopy. A combination of Raman and infrared spectroscopy has been used to study the mineral hydromagnesite. An intense band is observed at 1121 cm−1, attributed to the CO32−ν1 symmetric stretching mode. A series of infrared bands at 1387, 1413 and 1474 cm−1 are assigned to the CO32−ν3 antisymmetric stretching modes. The CO32−ν3 antisymmetric stretching vibrations are extremely weak in the Raman spectrum and are observed at 1404, 1451, 1490 and 1520 cm−1. A series of Raman bands at 708, 716, 728 and 758 cm−1 are assigned to the CO32−ν2 in‐plane bending mode. The Raman spectrum in the OH stretching region is characterized by bands at 3416, 3516 and 3447 cm−1. In the infrared spectrum, a broad band is found at 2940 cm−1, which is assigned to water stretching vibrations. Infrared bands at 3430, 3446, 3511, 2648 and 3685 cm−1 are attributed to MgOH stretching modes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Magnesium minerals are important in the understanding of the concept of geosequestration. The two hydrated hydroxy magnesium‐carbonate minerals artinite and dypingite were studied by Raman spectroscopy. Intense bands are observed at 1092 cm−1 for artinite and at 1120 cm−1 for dypingite, attributed ν1 symmetric stretching mode of CO32−. The ν3 antisymmetric stretching vibrations of CO32− are extremely weak and are observed at 1412 and 1465 cm−1 for artinite and at 1366, 1447 and 1524 cm−1 for dypingite. Very weak Raman bands at 790 cm−1 for artinite and 800 cm−1 for dypingite are assigned to the CO32−ν2 out‐of‐plane bend. The Raman band at 700 cm−1 of artinite and at 725 and 760 cm−1 of dypingite are ascribed to CO32−ν2 in‐plane bending mode. The Raman spectrum of artinite in the OH stretching region is characterised by two sets of bands: (1) an intense band at 3593 cm−1 assigned to the MgOH stretching vibrations and (2) the broad profile of overlapping bands at 3030 and 3229 cm−1 attributed to water stretching vibrations. X‐ray diffraction studies show that the minerals are disordered. This is reflected in the difficulty of obtaining Raman spectra of reasonable quality, and explains why the Raman spectra of these minerals have not been previously or sufficiently described. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The infrared spectrum of CH2D2 has been recorded between 1100 and 1360 cm?1 with a SISAM-type spectrometer whose resolution limit is about 0.015 cm?1 in our spectrum. Some lines have been identified as transitions of the ν3 parallel band of CH3D. The band center ν = 1236.2786 ± 0.0010 cm?1 and a set of upper state constants was obtained for the ν9 band of CH2D2. A perturbation was pointed out in ν9; nevertheless, all frequencies have been fitted with a standard deviation of 3.8 × 10?3 cm?1.  相似文献   

16.
Tellurites may be subdivided according to formula and structure. There are five groups based upon the formulae (a) A(XO3), (b) A(XO3)·xH2O, (c) A2(XO3)3·xH2O, (d) A2(X2O5) and (e) A(X3O8). Raman spectroscopy has been used to study the tellurite minerals teineite and graemite; both contain water as an essential element of their stability. The tellurite ion should show a maximum of six bands. The free tellurite ion will have C3v symmetry and four modes, 2A1 and 2 E. Raman bands for teineite at 739 and 778 cm−1 and for graemite at 768 and 793 cm−1 are assigned to the ν1 (TeO3)2− symmetric stretching mode while bands at 667 and 701 cm−1 for teineite and 676 and 708 cm−1 for graemite are attributed to the ν3 (TeO3)2− antisymmetric stretching mode. The intense Raman band at 509 cm−1 for both teineite and graemite is assigned to the water librational mode. Raman bands for teineite at 318 and 347 cm−1 are assigned to the (TeO3)2−ν2(A1) bending mode and the two bands for teineite at 384 and 458 cm−1 may be assigned to the (TeO3)2−ν4(E) bending mode. Prominent Raman bands, observed at 2286, 2854, 3040 and 3495 cm−1, are attributed to OH stretching vibrations. The values for these OH stretching vibrations provide hydrogen bond distances of 2.550(6) Å (2341 cm−1), 2.610(3) Å (2796 cm−1) and 2.623(2) Å (2870 cm−1) which are comparatively short for secondary minerals. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The infrared spectrum of chloroform in the region of the parallel fundamental band ν3 around 367 cm?1 has been measured with a Fourier spectrometer at a resolution of 0.001 cm?1. An isotopically pure sample of CH35Cl3 was used. More than 5000 lines were assigned in the ν3 band. A reanalysis of the ground state constants was performed by combining 1671 combination differences from this work, 712 differences from a previous study of the ν2 band, and 80 millimetre wave lines from the literature. In the analysis of the ν3 band, a model of an unperturbed symmetric top band was applied. The data were fitted with a standard deviation of 0.18 × 10?3 cm?1, and the following leading parameters were obtained: ν0 = 367.295 550(8) cm?1, B 3B 0 = ?77.058(4) × 10?6 cm?1 and C 3C 0 = ?18.600(11) × 10?6 cm?1. In addition, several hot bands have been studied. The isotopic effects were studied also by analysing spectra of the isotopically natural sample.  相似文献   

18.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives RMS = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

19.
The Raman scattering cross section (RSCS) is an important parameter in the applications of Raman spectroscopy to make quantitative analysis. To date, the dependence of the RSCS on concentration has remained unclear. Nitrate aerosols can easily achieve a supersaturated state, which provides a way to obtain the RSCS especially under this state. In this study, Raman spectra of NaNO3 and Mg(NO3)2 solutions are obtained with molar water‐to‐solute ratios (WSRs) ranging from 84.2 to 2.30 and 93.8 to 7.32, respectively. With decreasing WSR, a shift to higher wavenumbers of the symmetric stretching band of nitrate ion, i.e. ν1(NO3), is observed, indicating the formation of various ion pairs. Meanwhile, the area ratio between the strongly and weakly hydrogen‐bonded components of water O H stretching envelope, i.e. ν(H2O), reduces as the WSR decreases, implying the transformation of water molecules from strong hydrogen‐bonding structures to the weak ones. However, a good linear relationship is revealed between the integrated intensity ratio of the ν(H2O) band to ν1(NO3) band and WSR. The results suggest that the RSCSs of NO3 and H2O are insensitive to the structures of both ion pairs and hydrogen‐bonding structures. This observation points to the possibility of conducting quantitative analysis through the area ratio of the ν(H2O) band to the ν1(NO3) band with Raman spectra without considering the formation of ion pairs and the variation of the hydrogen‐bonding structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Benzene adsorbed on highly acidic sulfated TiO2 (S‐TiO2) shows an intriguing resonance Raman (RR) effect, with excitation in the blue‐violet region. There are very interesting spectral features: the preferential enhancement of the e2g mode (1595 cm−1) in relation to the a1g mode (ring‐breathing mode at 995 cm−1) and the appearance of bands at 1565 and 1514 cm−1. The band at 1565 cm−1 is probably one of the components of the e2g split band, originally a doubly degenerate mode (8a, 8b) in neat benzene, and the band at 1514 cm−1 is assigned to the 19a mode, an inactive mode in neat benzene. These facts indicate a lowering of symmetry in adsorbed benzene, which may be caused by a strong interaction between S‐TiO2 and the benzene molecule with formation of a benzene to Ti (IV) charge transfer (CT) complex or by the formation of a benzene radical cation species. However, the RR spectra of the adsorbed benzene cannot be assigned to the benzene radical cation because the observed wavenumber of the ring‐breathing mode does not have the value expected for this species. Moreover, it was found by ESR measurements that the amount of radicals was very low, and so it was concluded that a CT complex is the species that originates the RR spectra. The most favorable intensification of the band at 1595 cm−1 in the RR spectra of benzene/S‐TiO2 at higher excitation energy corroborates this hypothesis, as an absorption band in this energy range, assigned to a CT transition, is observed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号