首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photodegradable physically cross‐linked polymer networks are prepared from self‐assembly of photolabile triblock copolymers. Linear triblock copolymers composed of poly (o‐nitrobenzyl methacrylate) and poly(ethylene glycol) (PEG) segments of variable molecular weights were synthesized using atom transfer radical polymerization. Triblock polymers with low‐molecular‐weight PEG segments form solid films upon hydration with robust mechanical properties including a Young's modulus of 76 ± 12 MPa and a toughness of 108 ± 31 kJ m−3. Triblock polymers with high‐molecular‐weight PEG segments form physically cross‐linked hydrogels at room temperature with a dynamic storage modulus of 13 ± 0.6 kPa and long‐term stability in hydrated environments. Both networks undergo photodegradation upon irradiation with long wave UV light.

  相似文献   


2.
Imitating the natural “energy cascade” architecture, we present a single‐molecular rod‐like nano‐light harvester (NLH) based on a cylindrical polymer brush. Block copolymer side chains carrying (9,9‐diethylfluoren‐2‐yl)methyl methacrylate units as light absorbing antennae (energy donors) are tethered to a linear polymer backbone containing 9‐anthracenemethyl methacrylate units as emitting groups (energy acceptors). These NLHs exhibit very efficient energy absorption and transfer. Moreover, we manipulate the energy transfer by tuning the donor–acceptor distance.

  相似文献   


3.
Well‐defined ABC triblock copolymers based on two hydrophilic blocks, A and C, and a hydrophobic block B are synthesized and their self‐assembly behavior is investigated. Interestingly, at the same solvent, concentration, pH, and temperature, different shape micelles are observed, spherical and worm‐like micelles, depending on the preparation method. Specifically, spherical micelles are observed with bulk rehydration while both spherical and worm‐like micelles are observed with film rehydration.

  相似文献   


4.
As emerging technologies continue to require diverse materials capable of exhibiting tunable stimuli‐responsiveness, shape‐memory materials are of considerable significance because they can change size and/or shape in controllable fashion upon environmental stimulation. Of particular interest, shape‐memory polymers (SMPs) have secured a central role in the ongoing development of relatively lightweight and remotely deployable devices that can be further designed with specific surface properties. In the case of thermally‐activated SMPs, two functional chemical species must be present to provide (i) an elastic network capable of restoring the SMP to a previous strain state and (ii) switching elements that either lock‐in or release a temporary strain at a well‐defined thermal transition. While these species are chemically combined into a single macromolecule in most commercially available SMPs, this work establishes that, even though they are physically separated across one or more polymer/polymer interfaces, their shape‐memory properties are retained in melt‐spun bicomponent fibers. In the present study, we investigate the effects of fiber composition and cross‐sectional geometry on both conventional and cold‐draw shape memory, and report surprisingly high levels of strain fixity and recovery that generally improve upon strain cycling.

  相似文献   


5.
Spontaneous formation of polymer nanoparticles of well‐defined, <100 nm sizes with controlled solid/hollow morphology and fluorescent properties is reported. The nanoparticle formation is assisted by temperature‐triggered nucleation of an amphiphilic polymer—poly(N‐isopropylacrylamide) (PNIPAM)—and mediated by hydrogen bonding of the emerged nuclei with tannic acid (TA). The pH of solution and TA/PNIPAM ratios are explored as parameters that define TA/PNIPAM assembly. Well‐defined nanoparticles are formed in a wide range of neutral pH when the TA/PNIPAM ratio exceeds its critical, pH‐dependent value. Dynamic light scattering and zeta potential measurements as well as atomic force microscopy and electron energy loss spectroscopy indicate that solid nanoparticles or nanocapsules are formed depending on the solution pH and that enhanced ionization of TA favors hollow morphology. Nanocapsules exhibit label‐free fluorescence at neutral pH values and therefore can be useful in imaging applications.

  相似文献   


6.
Binary polystyrene and poly(4‐vinylpyridine) mixed grafted silica nanoparticles (PSt/P4VP‐g‐SNPs) are fabricated using CuI‐catalyzed azide‐alkyne Huisgen cycloaddition (CuAAC) via grafting‐to method. Azide‐terminated PSt and P4VP are synthesized via post‐ and pre‐atom transfer radical polymerization modification, respectively. Then, the polymers are simultaneously anchored onto alkyne‐modified SNPs by CuAAC yielding mixed brushes as shown by Raman spectroscopy, dynamic light scattering, and thermogravimetric analysis. To the best of our knowledge, this is the first report of simultaneously grafting two distinct polymer chains to synthesize mixed grafted silica nanoparticles using CuAAC technique via grafting‐to method.

  相似文献   


7.
Inspired by the multifunctionality of vitamin D‐binding protein and the multiple transient‐binding behavior of some intrinsically disordered proteins (IDPs), a polymeric platform is designed, prepared, and characterized for combined delivery of dermal protective and anticancer bioactive cargos on the basis of artificial single‐chain nano‐objects mimicking IDPs. For the first time ever, simultaneous delivery of folic acid or vitamin B9, and hinokitiol, a relevant natural bioactive compound that exhibits anticancer activity against human malignant melanoma cells, from these multidirectionally self‐assembled unimolecular nanocarriers is illustrated.

  相似文献   


8.
A thiofunctional thiazolidine is introduced as a new low‐molar‐mass building block for the introduction of cysteine residues via a thiol‐ene reaction. Allyl‐functional polyglycidol (PG) is used as a model polymer to demonstrate polymer‐analogue functionalization through reaction with the unsaturated side‐chains. A modified trinitrobenzenesulfonic acid (TNBSA) assay is used for the redox‐insensitive quantification and a precise final cysteine content can be predetermined at the polymerization stage. Native chemical ligation at cysteine‐functional PG is performed as a model reaction for a chemoselective peptide modification of this polymer. The three‐step synthesis of the thiofunctional thiazolidine reactant, together with the standard thiol‐ene coupling and the robust quantification assay, broadens the toolbox for thiol‐ene chemistry and offers a generic and straightforward approach to cysteine‐functional materials.

  相似文献   


9.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


10.
A novel rod‐containing block copolymer is constructed by supramacromolecular self‐assembly of α‐cyclodextrin and a triblock copolymer with methoxy polyethylene glycol as the flanking chains and the midterm block alternately connected by 2,2‐dimethylolbutyric acid and isophorone diisocyanate. The assembled rod‐containing block copolymer shows an exciting phenomenon of concentration‐ and pH‐dependent morphological switching of well‐defined nanostructures. In the solutions at pH 9.2, spherical micelles, rod‐like micelles, and hydrogel are observed successively with an increase of the concentration. Notably, the rod‐like micelles are composed of spherical segments due to the combination of the crystalline cores of the spherical micelles. In addition, 1D nanostructures with different curvatures from linear rod‐like micelles (pH 9.2) to ring‐shaped micelles (pH 7.5) can be obtained by controlling the pH values of the assembled systems.

  相似文献   


11.
Simulated‐sunlight induced atom transfer radical polymerization is used for spatial control over polymer brush growth by in situ photo‐generation of the CuI/L activator complex from its higher oxidation state CuII/L deactivator complex using dye sensitized titanium dioxide nano­particles. The polymerization is well controlled under sunlight irradiation. Another attractive feature of this method is the possibility of creating various patterned surfaces of brushes using photomasks. When a nanoporous alumina oxide membrane is used as the template for confinement diffusion of photogenerated CuI/L catalyst, patterns with sub‐50 nm resolution are obtained.

  相似文献   


12.
This work describes the synthesis of π‐conjugated polymers possessing arylene and 1,3‐butadiene alternating units in the main chain by the reaction of α,β‐unsaturated ester/nitrile containing γ‐H with aromatic/heteroaromatic aldehyde compound. By using 4‐(4‐formylphenyl)‐2‐butylene acid ethyl ester as a model monomer, the different polymerization conditions, including catalyst, catalyst amount, and solvent, are optimized. The polymerization of 4‐(4‐formylphenyl)‐2‐butylene acid ethyl ester is carried out by refluxing in ethanol for 72 h with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as a catalyst to give a 1,3‐butadiene‐containing π‐conjugated polymer, poly(phenylene‐1,3‐butadiene), in 84.3% yield with and / (PDI) estimated as 6172 and 1.65, respectively. Based on this new methodology, a series of π‐conjugated polymers containing 1,3‐butadiene units with different substituents are obtained in high yields. A possible mechanism is proposed for the polymerization through a six‐membered ring transition state and then a 1,5‐H shift intermediate.

  相似文献   


13.
Endowing unimolecular soft nanoobjects with biomimetic functions is attracting significant interest in the emerging field of single‐chain technology. Inspired by the compartmentalized structure and polymerase activity of metalloenzymes, copper‐containing compact nanoglobules have been designed, synthesized, and characterized endowed with metalloenzyme mimicking characteristics toward controlled synthesis of water‐soluble polymers and thermoresponsive hydrogels. When compared to metalloenzymes, artificial nanoobjects endowed with metalloenzyme mimicking characteristics offer increased stability against thermal changes and reduced degradability by hydrolytic enzymes.

  相似文献   


14.
This paper reports on the synthesis of well‐defined polyacrylamide‐based nanogels via reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization, highlighting a templateless route for the efficient synthesis of nanogels based on water‐soluble polymers. RAFT dispersion polymerization of acrylamide in co‐nonsolvents of water–tert‐butanol mixtures by chain extension from poly(dimethylacrylamide) shows well‐controlled polymerization process, uniform nanogel size, and excellent colloidal stability. The versatility of this approach is further demonstrated by introducing a hydrophobic co‐monomer (butyl acrylate) without disturbing the dispersion polymerization process.

  相似文献   


15.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


16.
Amino‐acid‐based chiral surfactants with polymerizable moieties are synthesized, and a versatile approach to prepare particles thereof with a chiral surface functionality is presented. As an example of an application, the synthesized particles are tested for their ability as nucleating agents in the enantioselective crystallization of amino acid conglomerate systems, taking rac‐asparagine as a model system. Particles resulting from chiral surfactants with different tail groups are compared and the results demonstrate that only the chiral nanoparticles made of the polymerizable surfactant are able to act efficiently as nucleation agent in enantioselective crystallization.

  相似文献   


17.
Vinyl acetate is polymerized in the living way under the irradiation of blue light‐emitting diodes (LEDs) or sunlight without photocatalyst at ambient temperature. 2‐(Ethoxycarbonothioyl)sulfanyl propanoate is exclusively added and acts as initiator and chain transfer agent simultaneously in the current system. Poly(vinyl acetate) with well‐regulated molecular weight and narrow molecular weight distribution (Đ < 1.30) is synthesized. Near quantitative end group fidelity of polymer is demonstrated by nuclear magnetic resonance (NMR) and matrix‐assisteed laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS).

  相似文献   


18.
Electron‐deficient heterocycle 1,3,4‐oxadiazole is first introduced to the 2‐position of thieno[3,4‐b]thiophene (TT) to construct a new building block 2‐(thieno[3,4‐b]thiophen‐2‐yl)‐5‐(alkylthio)‐1,3,4‐oxadiazole (TTSO) with alkylthio chain. The polymer PBDT–TTSO based on TTSO and benzodithiophene (BDT) exhibits a deep lying highest occupied molecular orbital (HOMO) energy level of −5.32 eV and low‐bandgap of 1.62 eV. The power conversion efficiency (PCE) of 5.86% is obtained with a relatively high V OC of 0.74 V, a J SC of 13.1 mA cm−2, and FF of 60.5%. Furthermore, as S atom in thioether can be oxidized easily, the optoelectronic properties of PBDT–TTSO treated with different oxidants are preliminary investigated. Interestingly, the oxidation products still maintain high PCE with reduction less than 30%. This work demonstrates a new method to regulate HOMO energy levels by introducing electron‐deficient aromatic heterocyclic moiety.

  相似文献   


19.
Molecular bottle‐brush functionalized single‐walled carbon nanotubes (SWCNTs) with superior dispersibility in water are prepared by a one‐pot synthetic methodology. Elongating the main‐chain and side‐chain length of molecular bottle‐brushes can further increase SWCNT dispersibility. They show significant enhancement of SWCNT dispersibility up to four times higher than those of linear molecular functionalized SWCNTs.

  相似文献   


20.
Surface‐initiated photo‐induced copper‐mediated radical polymerization is employed to graft a wide range of polyacrylate brushes from silicon substrates at extremely low catalyst concentrations. This is the first time that the controlled nature of the reported process is demonstrated via block copolymer formation and re‐initiation experiments. In addition to unmatched copper catalyst concentrations in the range of few ppb, film thicknesses up to almost 1 μm are achieved within only 1 h.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号