首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoalkylated derivatives of the unusually polar all-cis 2,3,4,5,6- pentafluorocyclohexyl (Janus face) motif are prepared starting from an aryl hydrogenation of 2,3,4,5,6- pentafluorophenylacetate methyl ester 15 . The method used Zeng's Rh(CAAC) carbene catalyst 4 in the hydrogenation following the protocol developed by Glorius. The resultant Janus pentafluorocyclohexylacetate methyl ester 16 was converted to the corresponding alcohol 18 , aldehyde 13 , bromide 29 and azide 14 through functional group manipulations, and some of these building blocks were used in Ugi-multicomponent and Cu-catalysed click reactions. NBoc protected pentafluoroarylphenylalanine methyl ester 35 was also subject to an aryl hydrogenation, and then deprotection to generate the Janus face β-pentafluorocyclohexyl-alanine amino acid 15 , which was incorporated into representative members of an emerging class of candidate antiviral compounds. Log P measurements demonstrate that the all-cis 2,3,4,5,6-pentafluorocyclohexyl ring system is more polar than a phenyl ring. In overview the paper introduces new building blocks containing this Janus ring and demonstrates their progression to molecules typically used in bioactives discovery programmes.  相似文献   

2.
A visible-light-induced, transition-metal and photosensitizer-free cross-coupling of aryl iodides with hydrazones was developed. In this strategy, hydrazones were used as alternatives to organometallic reagents, in the absence of a transition metal or an external photosensitizer, making this cross-coupling mild and green. The protocol was compatible with a variety of functionalities, including methyl, methoxy, trifluoromethyl, halogen, and heteroaromatic rings. Mechanistic investigations showed that the association of the hydrazone anion with aryl halides formed an electron donor–acceptor complex, which when excited with visible light generated an aryl radical via single-electron transfer.

Visible-light-induced catalyst-free cross-coupling of aryl iodides with hydrazones via single-electron-transfer was reported. The mechanistic investigations showed that the association of hydrazone anion with aryl iodides formed an EDA complex.  相似文献   

3.
Controlling the reciprocity between chemical reactivity and supramolecular structure is a topic of great interest in the emergence of molecular complexity. In this work, we investigate the effect of a covalent reaction as a trigger to depolymerize a supramolecular assembly. We focus on the impact of an in situ thiol–ene reaction on the (co)polymerization of three derivatives of benzene-1,3,5-tricarboxamide (BTA) monomers functionalized with cysteine, hexylcysteine, and alkyl side chains: Cys-BTA, HexCys-BTA, and a-BTA. Long supramolecular polymers of Cys-BTA can be depolymerized into short dimeric aggregates of HexCys-BTAvia the in situ thiol–ene reaction. Analysis of the system by time-resolved spectroscopy and light scattering unravels the fast dynamicity of the structures and the mechanism of depolymerization. Moreover, by intercalating the reactive Cys-BTA monomer into an unreactive inert polymer, the in situ thiol–ene reaction transforms the intercalator into a sequestrator and induces the depolymerization of the unreactive polymer. This work shows that the implementation of reactivity into supramolecular assemblies enables temporal control of depolymerization processes, which can bring us one step closer to understanding the interplay between non-covalent and covalent chemistry.

We report on the controlled depolymerization of supramolecular 1D polymers into well-defined dimers triggered by a covalent reaction on the side chains of the monomer.  相似文献   

4.
We report highly selective photocatalytic functionalisations of alkyl groups in aryl alkyl ethers with a range of electron-poor alkenes using an acridinium catalyst with a phosphate base and irradiation with visible light (456 nm or 390 nm). Experiments indicate that the reaction operates via direct single-electron oxidation of the arene substrate ArOCHRR′ to its radical cation by the excited state organic photocatalyst; this is followed by deprotonation of the ArOC–H in the radical cation to yield the radical ArOC˙RR′. This radical then attacks the electrophile to form an intermediate alkyl radical that is reduced to complete the photocatalytic cycle. The oxidation step is selective for activated arenes (ArOR) over their non-activated counterparts and the subsequent deprotonation of the methoxy group affords the α-aryloxyalkyl radical that leads to a wide range of functionalised products in good to excellent yield.

We report highly selective photocatalytic functionalisations of alkyl groups in aryl alkyl ethers with a range of electron-poor alkenes using an acridinium catalyst with a phosphate base and irradiation with visible light (456 nm or 390 nm).  相似文献   

5.
The orientation of the two phenyl rings in α,ω-diphenylalkanes with rigid carbon skeletons is investigated through characterization of the crystal and molecular structures of 1,3-diphenyladamantane (1) and trans-1,4-diphenylcyclohexane (2). The two phenyl rings in 1 have different conformations about the C-Ph bonds, with torsion angles between the phenyl ring and the C1-C2-C3 plane of 0.65 and 71.7°. A hydrogen atom at the meta-position of one of the phenyl rings contact intermolecularly with a tertiary hydrogen atom at C5 of adamantane within the sum of van der Waals radii. Due to the helical conformation, the short CH?HC contacts (2.231 Å) construct supramolecular triple helical strands. In contrast to 1, the phenyl rings in 2 have identical configurations, with equatorial position and bisected conformation as expected from density functional calculations. The molecular packing of 2 exhibits a herringbone pattern of (aromatic)C-H?π contacts.  相似文献   

6.
Photoisomeric supramolecular assemblies have drawn enormous attention in recent years. Although it is a general rule that photoisomerization from a less to a more distorted isomer causes the destruction of assemblies, this photoisomerization process inducing a converse transition from irregular aggregates to regular assemblies is still a great challenge. Here, we report a converse sol-to-gel transition derived from the planar to nonplanar photoisomer conversion, which is in sharp contrast to the conventional light-induced gel collapse. A well-designed acylhydrazone-linked monomer is exploited as a photoisomer to realize the above-mentioned phase transition. In the monomer, imine is responsible for transcis interconversion and amide generates intermolecular hydrogen bonds enabling the photoisomerization-driven self-assembly. The counterintuitive feature of the sol-to-gel transition is ascribed to the partial transcis photoisomerization of acylhydrazone causing changes in stacking mode of monomers. Furthermore, the reversible phase transition is applied in the valves formed in situ in microfluidic devices, providing fascinating potential for miniature materials.

A converse sol-to-gel transition system based on transcis photoisomerization of acylhydrazone-based supramolecular assemblies has been sucessfully established, which was applied in the gel-based microvalves that can in situ control flow by light.  相似文献   

7.
Recent advances in the research field of supramolecularly engineered dye aggregates have enabled the design of simple one-dimensional stacks such as fibers and of closed structures such as nanotoroids (nanorings). More complex and advanced supramolecular systems could potentially be designed using a molecule that is able to provide either of these distinct nanostructures under different conditions. In this study, we introduced bulky but strongly aggregating cholesterol units to a scissor-shaped azobenzene dyad framework, which affords either nanotoroids, nanotubes, or 1D fibers, depending on the substituents. This new dyad with two trans-azobenzene arms shows supramolecular polymorphism in its temperature-controlled self-assembly, leading to not only oligomeric nanotoroids as kinetic products, but also to one-dimensional fibers as thermodynamic products. This supramolecular polymorphism can also be achieved via photo-triggered self-assembly, i.e., irradiation of a monomeric solution of the dyad with two cis-azobenzene arms using strong visible light leads to the preferential formation of nanotoroids, whereas irradiation with weak visible light leads to the predominant formation of 1D fibers. This is the first example of a successful light-induced modulation of supramolecular polymorphism to produce distinctly nanostructured aggregates under isothermal conditions.

Introduction of the bulky yet strongly aggregating cholesterol units to an azobenzene dyad lead to a supramolecular polymorphism not only in its temperature-controlled but also in photo-triggered self-assembly, leading to toroids and helical fibers.  相似文献   

8.
A well-defined, bench-stable nickel catalyst is presented here, that can facilitate double alkylation of a methyl ketone to realize a wide variety of cycloalkanes. The performance of the catalyst depends on the ligand redox process comprising an azo-hydrazo couple. The source of the bis electrophile in this double alkylation is a 1,n-diol, so that (n+1)-membered cycloalkanes can be furnished in a stereoselective manner. The reaction follows a cascade of dehydrogenation/hydrogenation reactions and adopts a borrowing hydrogen (BH) method. A thorough mechanistic analysis including the interception of key radical intermediates and DFT calculations supports the ligand radical-mediated dehydrogenation and hydrogenation reactions, which is quite rare in BH chemistry. In particular, this radical-promoted hydrogenation is distinctly different from conventional hydrogenations involving a metal hydride and complementary to the ubiquitous two-electron driven dehydrogenation/hydrogenation reactions.

A homogeneous nickel catalyst is described that forms (n+1)-membered cycloalkane rings from ketones and 1,n-diols following a radical-promoted pathway.  相似文献   

9.
Ethylene-bridged oligoureas are dynamic foldamers in which the polarity of a coherent chain of intramolecular hydrogen bonds may be controlled by intra- or intermolecular interactions with hydrogen-bond donors or acceptors. In this paper, we describe the way that supramolecular interactions between ethylene-bridged oligoureas bearing a 3,5-bis(trifluoromethyl)phenylurea (BTMP) terminus leads to higher-order structures both in the crystalline state and in solution. The oligoureas self-assemble by head-to-tail hydrogen bonding interactions to form either supramolecular ‘nanorings’ with cyclic hydrogen bond chain directionality, or supramolecular helical chains of hydrogen bonds. The self-assembly process features a cascade of cooperative positive allostery, in which each intermolecular hydrogen bond formation at the BTMP terminus switches the native hydrogen bond chain directionality of monomers, favouring further assembly. Monomers with a benzyl urea terminus self-assemble into nanorings, whereas monomers with a N-ethyl urea terminus form helical chains. In the crystal state, parallel helices have identical handedness and polarity, whereas antiparallel helices have opposite handedness. The overall dipole moment of crystals is zero due to the antiparallel arrangements of local dipoles in the crystal packing. Supramolecular interactions in solution were also examined by VT and DOSY NMR spectroscopy, up to the point of crystal formation. The size of higher aggregates in dichloromethane was estimated by their hydrodynamic radius. The relative orientation of the monomers within the aggregates, determined by 2D ROESY NMR, was the same as in the crystals, where syn-orientations lead to the formation of rings and anti-orientations result in chains. Overall, the switch of hydrogen bond polarity propagates intermolecularly in crystal and solution states, constituting an example of intermolecular communication within supramolecular polymers.

Hydrogen-bonded urea oligomers form supramolecular aggregates in the crystalline state. Intermolecular hydrogen bonding generates nano-rings or chains, according to the length and substitution pattern of the oligomers.  相似文献   

10.
Difluoroalkylated compounds have important applications in pharmaceutical, agrochemical, and materials science. However, efficient methods to construct the alkylCF2–alkyl bond are very limited, and the site-selective introduction of a difluoromethylene (CF2) group into an aliphatic chain at the desired position remains challenging. Here, we report an unprecedented example of alkylzirconocene promoted difluoroalkylation of alkyl- and silyl-alkenes with a variety of unactivated difluoroalkyl iodides and bromides under the irradiation of visible light without a catalyst. The resulting difluoroalkylated compounds can serve as versatile synthons in organic synthesis. The reaction can also be applied to activated difluoroalkyl, trifluoromethyl, perfluoroalkyl, monofluoroalkyl, and nonfluorinated alkyl halides, providing a general method to controllably access fluorinated compounds. Preliminary mechanistic studies reveal that a single electron transfer (SET) pathway induced by a Zr(iii) species is involved in the reaction, in which the Zr(iii) species is generated by the photolysis of alkylzirconocene with blue light.

An unprecedented example of alkylzirconocene promoted difluoroalkylation of alkyl- and silyl-alkenes with a variety of fluoroalkyl and nonfluoroalkyl halides under the irradiation of visible light has been reported.  相似文献   

11.
We demonstrate phage-display screening on self-assembled ligands that enables the identification of oligopeptides that selectively bind dynamic supramolecular targets over their unassembled counterparts. The concept is demonstrated through panning of a phage-display oligopeptide library against supramolecular tyrosine-phosphate ligands using 9-fluorenylmethoxycarbonyl-phenylalanine-tyrosine-phosphate (Fmoc-FpY) micellar aggregates as targets. The 14 selected peptides showed no sequence consensus but were enriched in cationic and proline residues. The lead peptide, KVYFSIPWRVPM-NH2 (P7) was found to bind to the Fmoc-FpY ligand exclusively in its self-assembled state with KD = 74 ± 3 μM. Circular dichroism, NMR and molecular dynamics simulations revealed that the peptide interacts with Fmoc-FpY through the KVYF terminus and this binding event disrupts the assembled structure. In absence of the target micellar aggregate, P7 was further found to dynamically alternate between multiple conformations, with a preferred hairpin-like conformation that was shown to contribute to supramolecular ligand binding. Three identified phages presented appreciable binding, and two showed to catalyze the hydrolysis of a model para-nitro phenol phosphate substrate, with P7 demonstrating conformation-dependent activity with a modest kcat/KM = 4 ± 0.3 × 10−4 M−1 s−1.

Phage-display screening on self-assembled tyrosine-phosphate ligands enables the identification of oligopeptides selective to dynamic supramolecular targets, with the lead peptide showing a preferred hairpin-like conformation and catalytic activity.  相似文献   

12.
A library of tetrathiafulvalene (TTF) derivatives ( TTF‐1 – TTF‐47 ) bearing aryl groups attached through sulfur bridges has been created. The peripheral aryl groups exert a significant influence on both the electronic and crystallographic properties of the resulting TTFs. These TTFs display broad absorption bands at 400–500 nm caused by intramolecular charge‐transfer transitions between the aryl groups and central TTF core, and their first redox potentials increase with increasing electron‐withdrawing ability of the aryl groups. In their crystal structures (22 examples), the central TTF cores adopt various conformations, including chair, half‐chair, boat, and planar conformations. Moreover, the peripheral aryl groups exhibit multiple alignment modes with respect to the central TTF core, caused by their rotation about the two C? S bonds of the sulfur bridges. The packing motifs of these TTFs depend on both the nature of the aryl groups and their spatial alignment modes. Driven by intermolecular van der Waals forces and π–π interactions between the aryl groups and between the aryl groups and the TTF core, these TTFs adopt various packing structures. As a typical example, TTF‐14 , an achiral molecule, adopts a helical chain stack through intermolecular atomic close contacts. Moreover, the molecular geometries and packing motifs of these TTFs are sensitive to environmental variation, as exemplified by TTF‐28 , which adopts three distinct crystal modifications with diverse molecular geometries and stacking modes under different crystallization conditions. This work indicates that these TTFs are potential candidates as electronic materials, as well as functional building blocks for supramolecular assembly.  相似文献   

13.
14.
The addition of sulfonyl radicals to alkenes and alkynes is a valuable method for constructing useful highly functionalized sulfonyl compounds. The underexplored alkoxy- and fluorosulfonyl radicals are easily accessed by CF3 radical addition to readily available allylsulfonic acid derivatives and then β-fragmentation. These substituted sulfonyl radicals add to aryl alkyl alkynes to give vinyl radicals that are trapped by trifluoromethyl transfer to provide tetra-substituted alkenes bearing the privileged alkoxy- or fluorosulfonyl group on one carbon and a trifluoromethyl group on the other. This process exhibits broad functional group compatibility and allows for the late-stage functionalization of drug molecules, demonstrating its potential in drug discovery and chemical biology.

An unprecedented method for vicinal addition of alkoxysulfonyl/fluorosulfonyl and trifluoromethyl groups to aryl alkyl alkynes has been developed to afford useful alkenylsulfonate esters and alkenylsulfonyl fluorides.  相似文献   

15.
A palladium catalyzed enantioselective Heck/borylation reaction of alkene-tethered aryl iodides was realized, delivering a variety of 2,3-dihydrobenzofuranyl boronic esters in high yield with excellent enantioselectivity. Asymmetric synthesis of chromane boronic ester, indane boronic ester and indoline boronic ester was also accomplished. The protocol offers an efficient access to the corresponding chiral benzocyclic boronic esters, which are notably important chemical motifs in synthetic transformations.

A palladium catalyzed enantioselective Heck/borylation reaction of alkene-tethered aryl iodides was realized, delivering a variety of 2,3-dihydrobenzofuranyl boronic esters in high yield with excellent enantioselectivity.  相似文献   

16.
Molecular nanoparticles including polyoxometalates, proteins, fullerenes and polyhedral oligosiloxane (POSS) are nanosized objects with atomic precision, among which POSS derivatives are the smallest nanosilicas. Incorporation of molecular nanoparticles into chiral aggregates either by chiral matrices or self-assembly allows for the transfer of supramolecular chirality, yet the construction of intrinsic chirality with atomic precision in discrete molecules remains a great challenge. In this work, we present a molecular folding strategy to construct giant POSS molecules with inherent chirality. Ferrocenyl diamino acids are conjugated by two or four POSS segments. Hydrogen bonding-driven folding of diamino acid arms into parallel β-sheets facilitates the chirality transfer from amino acids to ferrocene and POSS respectively, disregarding the flexible alkyl spacers. Single crystal X-ray structures, density functional theory (DFT) calculations, circular dichroism and vibrational circular dichroism spectroscopy clearly verify the preferential formation of one enantiomer containing chiral molecular nanosilicas. The chiral orientation and chiroptical properties of POSS show pronounced dependence on the substituents of α-amino acids, affording an alternative way to control the folding behavior and POSS chirality in addition to the absolute configuration of amino acids. Through the kinetic nanoprecipitation protocol, one-dimensional aggregation enables chirality transfer from the molecular scale to the micrometer scale, self-assembling into helices in accordance with the packing propensity of POSS in a crystal phase. This work, by illustrating the construction of chiral molecular nanosilicas, paves a new way to obtain discrete chiral molecular nanoparticles for potential chiroptical applications.

A molecular folding strategy is developed to construct ferrocenyl diamino acid conjugated polyhedral oligosiloxane molecules. Hydrogen bonding-driven folding facilitates the chirality transfer from the molecular scale to the micrometer scale.  相似文献   

17.
Through-space donor–alkyl bridge–acceptor (D–σ–A) luminogens are developed as new organic single-molecule white light emitters (OSMWLEs) involving multiple higher lying singlet (Sn) and triplet (Tm) states (hot-excitons). Experimental and theoretical results confirm the origin of white light emission due to the co-existence of prompt fluorescence from locally excited states, thermally activated delayed fluorescence (TADF), and fast/slow dual phosphorescence color mixing simultaneously. Notably, the fast phosphorescence was observed due to trace amounts of isomeric impurities from commercial carbazole, while H-/J-aggregation resulted in slow phosphorescence. Crystal structure-packing-property analysis revealed that the alkyl chain length induced supramolecular self-assembly greatly influenced the solid-state optical properties. Remarkably, the 1D-microrod crystals of OSMWLEs demonstrated the first examples of triplet harvesting waveguides by self-guiding the generated phosphorescence through light propagation along their longitudinal axis. This work thus highlights an uncommon design strategy to achieve multi-functional OSMWLEs with in-depth mechanistic insights and optical waveguiding applications making them a potentially new class of white emissive materials.

Through-space donor–alkyl bridge–acceptor multifunctional organic single molecules that simultaneously displayed white light emission, thermally activated delayed fluorescence, room temperature dual phosphorescence and optical wave-guiding properties.  相似文献   

18.
The alkyl, aryl, and acyl substituent effects on the photoinduced electron transfer-initiated cyclization reaction of the title compounds (1) were investigated in polar solvents from mechanistic and synthetic points of view. The irradiation of (Z)-1 in methanol containing triethylamine (TEA) was found to quantitatively give cis- and trans-4,5-dihydrooxazole derivatives (cis-2 and trans-2). In addition to thermodynamic considerations for electron transfer and fluorescence quenching in the presence of TEA, acyl and aryl substituent effects on the emission intensity and photoreactivity of 1 confirmed the involvement of consecutive electron transfer reactions that form (E)-arylmethylene radical anion and (E)-N-acyl radical anion intermediates. It was also confirmed that the cyclization of the latter intermediate eventually leads to 2. On the basis of the finding that the selectivity for cis-2 is greatly increased with increasing the steric bulkiness of alkyl and aryl substituents in 1, it was concluded that steric hindrance of these substituents toward hydrogen shift in the cyclized biradical intermediate, precursor of 2, is responsible for the kinetically controlled hydrogen shift in this intermediate. A product composition analysis showed that the protic polar solvent, methanol, of hydrogen-bonding solvation ability is a most suitable solvent for the photocyclization reactions examined.  相似文献   

19.
Arylethylamines are abundant motifs in myriad natural products and pharmaceuticals, so efficient methods to synthesize them are valuable in drug discovery. In this work, we disclose an intramolecular alkene aminoarylation cascade that exploits the electrophilicity of a nitrogen-centered radical to form a C–N bond, then repurposes the nitrogen atom''s sulfonyl activating group as a traceless linker to form a subsequent C–C bond. This photoredox catalysis protocol enables the preparation of densely substituted arylethylamines from commercially abundant aryl sulfonamides and unactivated alkenes under mild conditions. Reaction optimization, scope, mechanism, and synthetic applications are discussed.

A photochemical assembly of cyclic arylethylamines occurs by cascade radical annulation and desulfonylative rearrangement in N-acyl sulfonamides. This aminoarylation is made possible through judicious design intended to thwart undesired reactivity.  相似文献   

20.
The evolution of hierarchical chirality at macromolecular and supramolecular levels in biological systems is ubiquitous; however, achieving precise control over transitions between them in polymer systems is still challenging. Here, we reported multiple chiroptical transitions and inversion phenomena in side-chain azobenzene (Azo) polymers, PAzo-l/d-m (m = 3, 6, 7, 8, 9, and 10, where m is the total number of atoms from the chiral stereocenter to the Azo unit), with different distances from the chiral stereocenter to the Azo unit. In the case of m = 3, an unexpected macromolecular-to-supramolecular chirality transition and inversion occurred in situ when the Azo-polymer underwent from a macromolecular-dissolved state to a supramolecular-aggregated state. To our surprise, an exciton-coupling induced multiple chiroptical inversion was observed upon the heating-assisted reassembly treatment, which was demonstrated to be driven by H- to J-aggregation transition. Furthermore, the odd–even effect was first established to regulate the supramolecular helical orientations (left- or right-handedness) in side-chain Azo-polymer assemblies.

Unexpected chirality transition and inversion at molecular, macromolecular and supramolecular levels were realized by dissolution–aggregation and the odd–even effect, which is helpful for the design of advanced chirality-controllable materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号