首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
富勒烯配合物η2-C60[Ru(NO)(PPh3)]2的合成与表征   总被引:4,自引:0,他引:4  
从1985年Kroto等[1]发现富勒烯至今, 其在化学、材料和物理等领域已有较多的研究[2~8]. 目前有关C60取代的金属小分子配合物(如羰基、亚硝酰基等)的研究方兴未艾. 而以NO为配体的亚硝酰基金属富勒烯配合物仅有数例[2,3], Green等[3]在研究以CO和NO为配体的金属富勒烯系列化合物的合成中, 认为C60不能与Ru(NO)2(PPh3)2发生反应. 本文利用Ru(NO)2(PPh3)2与C60反应首次合成出η2-C60[Ru(NO)(PPh3)]2配合物, 并对其进行了表征.  相似文献   

2.
Fourteen new PPh3 substituted Fe-S clusters,with general formula (μ-RS)(μ-R'S)Fe2(CO)5 PPh3,have been synthesized by reaction of unsymmetrical type of bis(μ-alkylthio ) hexacarbonyldiirons with triphenylphosphine.Based on the discussion of influence of PPh3 on VCO and alkyl spacial orientation of PPh3 in clusters has also been established.  相似文献   

3.
Two new ruthenium(Ⅱ) complexes, [Ru(btz)3](ClO4)2 (1) and [Ru(btz)(dppz)2](ClO4)2 (2) (btz = 4,4′-bithi-azole, dppz = dipyrido[3,2-a:2′,3′-c]phenazine), have been synthesized and characterized by elemental analysis, 1H NMR, ES-MS and X-ray crystallography. The DNA binding behaviors of two complexes have been studied by spectroscopic and viscosity measurements. The results suggest that complex 1 binds to CT-DNA via an electrostatic mode, while complex 2 via an intercalative mode. Under irradiation at 365 nm,...  相似文献   

4.
In the presence of Bu4NBr acting as phasetransfer reagent, organothiophosphoryl polyoxotungstate derivatives α-[RP(S)]2PW9O54^5- (R=C6Hs, C6H11) have been obtained by reaction of the trivacant β-[PW9O34]^9- anions with electrophilic C6H5P(S)Cl2 or C6H11P(S)Cl2 in acetonitrile. These new organic-inorganic hybrid anions have been characterized by elemental analysis, IR, ^31P and ^183W NMR spectroscopy. The collective application of the spectroscopy data of these new species indicates that the hybrid anion consists of an α-[PW9O34] framework on which are grafted two RP(S) groups through P-O-W bridges. The five-line ^183W spectra indicate that the hybrid anions possess Cs symmetry in acetonitrile.  相似文献   

5.
A series of diorganotin (IV) derivatives of R2SRL2 (R = Me, Et, n-Bu, ph or CI; L = Ll or L2) and their corresponding mixed-ligand complexes RESn (L1)(L2) have been prepared and the structure of trans-MeESn (L2)2 was characterized by FT-IR, ^1H, ^13C and ^ll9Sn NMR spectroscopies,MS, elemental analysis, melting points and X-ray diffIaction. The structure-activity relationships were discussed.  相似文献   

6.
Transition metal vinylidene complexes (M=C=CHR) have attracted a great deal of attention in recent years as a new type of organometallic intermediates that may have unusual reactivity[1]. Their reactivity has been explored and their application to organic synthesis is developed[2]. Recent reports on the ruthenium-vinylidene complexes[3]suggest that the reaction of ruthenium-vinylidene complexes with a base generates the coordinatively unsaturated ruthenium acetylide species, which are involved in a number of catalytic and stoichiometric reactions of alkynes. For example,the coordinatively unsaturated ruthenium acetylide species C5Me5Ru(PPh3)-C≡CPh,formed from the reaction of the vinylidene complex C5Me5Ru(PPh3) (Cl)=C=CHPh with a base was reactive toward a variety of small molecules and active in catalytic dimerization of terminal alkynes[4]. The dimerization of terminal alkyne is an effective method of forming enynes, but its synthetic application in organic synthesis has been limited dueto low selectivity for dimeric products[5]. In this communication, we report that three ruthenium complexes were used as catalysts for the highly selective dimerization of phenylacetylene.  相似文献   

7.
Hydroformylalion of 1-heptene catalyzed by homogeneous and heterogeneous Ru3(CO)12 catalyst has been investigated. Ru3(CO)12 almost has no activity when the reaction temperature is below 60℃, and nearly stable activity when over 100℃. The maximum selectivity for aldehyde is obtained at 120℃ and V/I values of aldehyde and alcohol decrease rapidly with increasing temperature. Supported Ru3(CO)12 catalysts modified with NaBH4 or KOH have higher activity and selectivity for aldehyde. Compared with supported Ru3(CO)12 catalysis, Ru3(CO)12/Co2(CO)g/γ-Al2O3 has high activity and selectivity. When PPh3 or (NKt4)Cl is added to the reaction system, the selectivity for aldehyde and the .N/I ratio increase. The FT-IR spectra of catalysts alter reaction show that Ru3(CO)12 is transformed to a hydrocarbonyl complex [HRu3(CO)11]-, and (NEt4)Cl promotes the formation of |HRu3(CO)11|- and stabilizes it.  相似文献   

8.
A novel complex of monomeric thallium (Ⅲ) with the nitrogen donor ligand phenanthroline (phen) has been prepared and characterized by multimuclear NMR(^1H,^13C,^205Tl). The three complexes exist in equilibria in DMSO and acetonitrile solution, which was proved by the ^205Tl NMR spectra. The ^1H and ^13C NMR spectra of tris-phen T1(Ⅲ) complex have been measured, where the spin-spin coupling between T1(I=1/2) and ^13C or ^1H signals were observed with the ^1H and ^13C NMR spectroscopy in acetonitrile. The coupling constants are presented and the chemical shifts of complexes are discussed in detail.  相似文献   

9.
Two new complexes [Ag(bix)]n·n NAA·n H_2O(1) and [Cd(NAA)(phen)_2(H_2O)]2· 2CH_3COO-·H_2O(2)(bix = 1,4-bis(imidazol-1-ylmethyl)benzene,HNAA = α-naphthylacetic acid,phen = 1,10-phenanthroline) have been successfully synthesized under hydrothermal conditions.Their structures have been determined by elemental analyses,IR spectroscopy,TG and single-crystal X-ray diffraction analysis.The intermolecular hydrogen bonding or π-π stacking interactions extend the complexes into a 3D supramolecular structure.Moreover,the luminescent properties of complex 2 have been investigated in the solid state.  相似文献   

10.
吴相华  余广鳌  孟祥高  陈艳  任勇  刘盛华 《结构化学》2006,25(12):1471-1474
1INTRODUCTION The fragment[Ru(η5-C5H5)(PPh3)2Cl]plays an important role in the organo-ruthenium chemistry development,and has been used as a versatile star-ting material for other compounds due to its stability and facile manipulation.Much work has shown that a wide range of ligands with different steric and electronic properties can displace not only the Cl ligand but also the phosphine groups in[Ru(η5-C5H5)(PPh3)2Cl][1].The interest in this fragment and related derivatives concer…  相似文献   

11.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

12.
Treatment of the ruthenabenzene [Ru{CHC(PPh(3))CHC(PPh(3))CH}Cl(2)(PPh(3))(2)]Cl (1) with excess 8-hydroxyquinoline in the presence of CH(3)COONa under air atmosphere produced the S(N)Ar product [(C(9) H(6)NO)Ru{CHC(PPh(3))CHC(PPh(3))C}(C(9)H(6)NO)(PPh(3))]Cl(2) (3). Ruthenabenzene 3 could be stable in the solution of weak alkali or weak acid. However, reaction of 3 with NaOH afforded a 7:1 mixture of ruthenabenzenes [(C(9)H(6)NO)Ru{CHC(PPh(3))CHCHC}(C(9)H(6)NO)(PPh(3))]Cl (4) and [(C(9)H(6)NO)Ru{CHCHCHC(PPh(3))C}(C(9)H(6)NO)(PPh(3))]Cl (5), presumably involving a P-C bond cleavage of the metallacycle. Complex 3 was also reactive to HCl, which results in a transformation of 3 to ruthenabenzene [Ru{CHC(PPh(3))CHC(PPh(3))C}Cl(2)(C(9)H(6)NO)(PPh(3))]Cl (6) in high yield. Thermal stability tests showed that ruthenabenzenes 4, 5, and 6 have remarkable thermal stability both in solid state and in solution under air atmosphere. Ruthenabenzenes 4 and 5 were found to be fluorescent in common solvents and have spectral behaviors comparable to those organic multicyclic compounds containing large π-extended systems.  相似文献   

13.
合成了一系列新的富勒烯钌配合物.通过元素分析、紫外-可见光谱、红外光谱、光电子能谱(XPS)和13C及31PNMR等多种手段对它们进行了表征.结果表明.该系列配合物分子内存在超共轭效应,共轭电子多.离域性好.通过光伏效应装置研究了它们的光电性能,结果显示该系列配合物具有良好的光电性能.  相似文献   

14.
Reaction of 2-(arylazo)phenols with [Ru(PPh(3))(2)(CO)(2)Cl(2)] affords a family of organometallic complexes of ruthenium(II) of type [Ru(PPh(3))(2)(CO)(CNO-R)], where the 2-(arylazo)phenolate ligand (CNO-R; R = OCH(3), CH(3), H, Cl, and NO(2)) is coordinated to the metal center as tridentate C,N,O-donor. Another group of intermediate complexes of type [Ru(PPh(3))(2)(CO)(NO-R)(H)] has also been isolated, where the 2-(arylazo)phenolate ligand (NO-R) is coordinated to the metal center as bidentate N,O-donor. Structures of the [Ru(PPh(3))(2)(CO)(NO-OCH(3))(H)] and [Ru(PPh(3))(2)(CO)(CNO-OCH(3))] complexes have been determined by X-ray crystallography. All the complexes are diamagnetic and show characteristic (1)H NMR signals and intense MLCT transitions in the visible region. Both the [Ru(PPh(3))(2)(CO)(NO-R)(H)] and [Ru(PPh(3))(2)(CO)(CNO-R)] complexes show two oxidative responses on the positive side of SCE.  相似文献   

15.
A series of vinyl, aryl, acetylide and silyl complexes [Ru(R)(kappa2-MI)(CO)(PPh3)2] (R = CH=CH2, CH=CHPh, CH=CHC6H4CH3-4, CH=CH(t)Bu, CH=2OH, C(C triple bond CPh)=CHPh, C6H5, C triple bond CPh, SiMe2OEt; MI = 1-methylimidazole-2-thiolate) were prepared from either [Ru(R)Cl(CO)(PPh3)2] or [Ru(R)Cl(CO)(BTD)(PPh3)2](BTD = 2,1,3-benzothiadiazole) by reaction with the nitrogen-sulfur mixed-donor ligand, 1-methyl-2-mercaptoimidazole (HMI), in the presence of base. In the same manner, [Os(CH=CHPh)(kappa2-MI)(CO)(PPh3)2] was prepared from [Os(CH=CHPh)(CO)Cl(BTD)(PPh3)2]. The in situ hydroruthenation of 1-ethynylcyclohexan-1-ol by [RuH(CO)Cl(BTD)(PPh3)2] and subsequent addition of the HMI ligand and excess sodium methoxide yielded the dehydrated 1,3-dienyl complex [Ru(CH=CHC6H9)(kappa2-MI)(CO)(PPh3)2]. Dehydration of the complex [Ru(CH=CHCPh2OH)(kappa2-MI)(CO)(PPh3)2] with HBF4 yielded the vinyl carbene [Ru(=CHCH=CPh2)(kappa2-MI)(CO)(PPh3)2]BF4. The hydride complexes [MH(kappa2-MI)(CO)(PPh3)2](M = Ru, Os) were obtained from the reaction of HMI and KOH with [RuHCl(CO)(PPh3)3] and [OsHCl(CO)(BTD)(PPh3)2], respectively. Reaction of [Ru(CH=CHC6H4CH3-4)(kappa2-MI)(CO)(PPh3)2] with excess HC triple bond CPh leads to isolation of the acetylide complex [Ru(C triple bond CPh)(kappa2-MI)(CO)(PPh3)2], which is also accessible by direct reaction of [Ru(C triple bond CPh)Cl(CO)(BTD)(PPh3)2] with 1-methyl-2-mercaptoimidazole and NaOMe. The thiocarbonyl complex [Ru(CPh = CHPh)Cl(CS)(PPh3)2] reacted with HMI and NaOMe without migration to yield [Ru(CPh= CHPh)(kappa2-MI)(CS)(PPh3)2], while treatment of [Ru(CH=CHPh)Cl(CO)2(PPh3)2] with HMI yielded the monodentate acyl product [Ru{eta(1)-C(=O)CH=CHPh}(kappa2-MI)(CO)(PPh3)2]. The single-crystal X-ray structures of five complexes bearing vinyl, aryl, acetylide and dienyl functionality are reported.  相似文献   

16.
Compounds of the form Ru(X2bipy)(PPh3)2(-C triple bond CC6H4NO2-p)2(X2bipy = 4,4'-X(2)-2,2'-bipyridine, X = Me 3a, Br 3b, I 3c) have been synthesised from the mono-alkynyl precursors Ru(X2bipy)(PPh3)2(-C triple bond CC6H4NO2-p)Cl (X = Me 2a, Br 2b, I 2c); the former are the first ruthenium bis-alkynyl compounds that also contain a bipyridyl ligand. Spectroelectrochemical investigation of 3a shows that the metal is readily oxidised to form the ruthenium(III) compound 3a+, and will also undergo a single-electron reduction at each nitro group to form 3a2-. ESR and UV/visible spectra of these redox congeners are presented. We also report the synthesis of [Ru(Me2bipy)(PPh3)2(-C triple bond CBut)(N triple bond N)][PF6] during the attempted synthesis of Ru(Me2bipy)(PPh3)2(-C triple bond CBut)2, and report its X-ray crystal structure and IR spectrum. X-Ray crystal structures of 3b and 3c(as two different solvates) are presented, and the nature of the intermolecular interactions seen therein is discussed. Z-Scan measurements on Ru(Me2bipy)(PPh3)2(-C triple bond CR)Cl (R = C6H4NO2-p2a, But, Ph, C6H4Me) are also reported, and show that Ru(Me2bipy)(PPh3)2(-C triple bond CR)Cl (R = C6H4NO2-p2a, Ph) exhibit moderate third-order non-linearities.  相似文献   

17.
Neutral and cationic mononuclear complexes containing both group 15 and polypyridyl ligands [Ru(kappa3-tptz)(PPh3)Cl2] [1; tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], [Ru(kappa3-tptz)(kappa2-dppm)Cl]BF4 [2; dppm=bis(diphenylphosphino)methane], [Ru(kappa3-tptz)(PPh3)(pa)]Cl (3; pa=phenylalanine), [Ru(kappa3-tptz)(PPh3)(dtc)]Cl (4; dtc=diethyldithiocarbamate), [Ru(kappa3-tptz)(PPh3)(SCN)2] (5) and [Ru(kappa3-tptz)(PPh3)(N3)2] (6) have been synthesized. Complex 1 has been used as a metalloligand in the synthesis of homo- and heterodinuclear complexes [Cl2(PPh3)Ru(micro-tptz)Ru(eta6-C6H6)Cl]BF4 (7), [Cl2(PPh3)Ru(mu-tptz)Ru(eta6-C10H14)Cl]PF6 (8), and [Cl2(PPh3)Ru(micro-tptz)Rh(eta5-C5Me5)Cl]BF4 (9). Complexes 7-9 present examples of homo- and heterodinuclear complexes in which a typical organometallic moiety [(eta6-C6H6)RuCl]+, [(eta6-C10H14)RuCl]+, or [(eta5-C5Me5)RhCl]+ is bonded to a ruthenium(II) polypyridine moiety. The complexes have been fully characterized by elemental analyses, fast-atom-bombardment mass spectroscopy, NMR (1H and 31P), and electronic spectral studies. Molecular structures of 1-3, 8, and 9 have been determined by single-crystal X-ray diffraction analyses. Complex 1 functions as a good precursor in the synthesis of other ruthenium(II) complexes and as a metalloligand. All of the complexes under study exhibit inhibitory effects on the Topoisomerase II-DNA activity of filarial parasite Setaria cervi and beta-hematin/hemozoin formation in the presence of Plasmodium yoelii lysate.  相似文献   

18.
Two series of stable cyanide-bridged linkage isomers, namely [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)MnL(NO)(eta-C5Me5)] (XY = CN or NC, L = CNBu(t) or CNXyl) and [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC-CPh)Tp'] {M = Mo or W, L = PPh3 or P(OPh)3, Tp' = hydrotris(3,5-dimethylpyrazolyl)borate} have been synthesised; pairs of isomers are distinguishable by IR spectroscopy and cyclic voltammetry. The molecular structure of [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-NC)Mo(CO)(PhC-CPh)Tp'] has the catecholate-bound ruthenium atom cyanide-bridged to a Mo(CO)(PhC[triple band]CPh)Tp' unit in which the alkyne acts as a four-electron donor; the alignment of the alkyne relative to the Mo-CO vector suggests the fragment (CN)Ru(CO)2(PPh3)(o-O2C6Cl4) acts as a pi-acceptor ligand. The complexes [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)Mn(NO)L(eta-C5Me5)] undergo three sequential one-electron oxidation processes with the first and third assigned to oxidation of the ruthenium-bound o-O2C6Cl4 ligand; the second corresponds to oxidation of Mn(I) to Mn(n). The complexes [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC[triple band]CPh)Tp'] are also first oxidised at the catecholate ligand; the second oxidation, and one-electron reduction, are based on the M(CO)(PhC[triple band]CPh)Tp' fragment. Chemical oxidation of [(o-O,C6Cl4)(Ph3P)(OC)2Ru(mu-XY)MnL(NO)(eta-C5Me5)] with [Fe(eta-C5H4COMe)(eta-C5H5)][BF4], or of [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC[triple band]CPh)Tp'] with AgBF4, gave the paramagnetic monocations [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)MnL(NO)(eta-C5Me5)]+ and [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC[triple band]CPh)Tp']+, the ESR spectra of which are consistent with ruthenium-bound semiquinone ligands. Linkage isomers are distinguishable by the magnitude of the 31P hyperfine coupling constant; complexes with N-bound Ru(o-O2C6Cl4) units also show small hyperfine coupling to the nitrogen atom of the cyanide bridge.  相似文献   

19.
Reaction of benzaldehyde semicarbazone (HL-R, where H is a dissociable proton and R is a substituent (R = OMe, Me, H, Cl, NO(2)) at the para position of the phenyl ring) with [Ru(PPh(3))(3)Cl(2)] and [Ru(PPh(3))(2)(CO2)Cl2] has afforded complexes of different types. When HL-NO(2) and [Ru(PPh(3))(3)Cl2] react in solution at ambient temperature, trans-[Ru(PPh(3))(2)(L-NO2Cl] is obtained. Its structure determination by X-ray crystallography shows that L-NO2 is coordinated as a tridentate C,N,O-donor ligand. When reaction between HL-NO2 and [Ru(PPh(3))(3)Cl2] is carried out in refluxing ethanol, a more stable cis isomer of [Ru(PPh(3))(2)(L-NO2)Cl] is obtained. The trans isomer can be converted to the cis isomer simply by providing appropriate thermal energy. Slow reaction of HL-R with [Ru(PPh(3))(2)(CO2)Cl2] in solution at ambient temperature yields 5-[Ru(PPh(3))(2)(L-R)(CO)Cl] complexes. A structure determination of 5-[Ru(PPh(3))(2)(L-NO2)(CO)Cl] shows that the semicarbazone ligand is coordinated as a bidentate N,O-donor, forming a five-membered chelate ring. When reaction between HL-R and [Ru(PPh(3))(2)(CO2Cl2] is carried out in refluxing ethanol, the 4-[Ru(PPh(3))(2)(L-R)(CO)Cl] complexes are obtained. A structure determination of 4-[Ru(PPh(3))(2)(L-NO2)(CO)Cl] shows that a semicarbazone ligand is bound to ruthenium as a bidentate N,O-donor, forming a four-membered chelate ring. All the complexes are diamagnetic (low-spin d(6), S = 0). The trans- and cis-[Ru(PPh(3))(2)(L-NO2)Cl] complexes undergo chemical transformation in solution. The 5- and 4-[Ru(PPh(3))(2)(L-R)(CO)Cl] complexes show sharp NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry of the 5-[Ru(PPh(3))(2)(L-R)(CO)Cl] and 4-[Ru(PPh(3))(2)(L-R)(CO)Cl] complexes show the Ru(II)-Ru(III) oxidation to be within 0.66-1.07 V. This oxidation potential is found to linearly correlate with the Hammett constant of the substituent R.  相似文献   

20.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号