首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Promising ongoing research on “smart” sensing technologies is offering low-cost alternatives and new opportunities for large-scale SHM. Networks of sensors with wireless communication and computational capabilities can be used to increase the spatial resolution of data collection while providing a distributed computing framework for implementing structural health monitoring algorithms. Robust and practical SHM methodologies being able to rapidly and accurately detect and assess changes in the monitored system are required to be at the core of these “smart” structures. A data-driven non-parametric identification technique is used to implement a robust change detection methodology for uncertain MDOF chain-like systems that can be implemented in densely distributed smart-sensor networks. Experimental data from a test-bed structure tested at Los Alamos National Laboratory are used to evaluate the effectiveness and reliability of the proposed SHM methodology. The results of this study showed that the proposed approach was able, in a rigorous statistical framework, to confidently detect the presence of structural changes, accurately locate the structural section where the change occurred, and provide an accurate estimate of the actual level of “change”. Additionally, a full-order finite element model of the test structure, as well as the results from the experimental modal identification using the ERA algorithm were employed to validate the results obtained in this change-detection study.  相似文献   

2.
Impedance-based damage detection techniques gained popularity among structural health monitoring (SHM) and nondestructive testing (NDT) communities due to their sensitivity to local damage and applicability to complex structures. In general, conventional impedance-based techniques identify damage by comparing “current” impedance signals with “baseline” ones obtained from the pristine condition of a structure. However, in-situ structures are often subject to changing temperature and loading conditions that can adversely affect measured impedance signals and cause false-alarms. In this paper, a “reference-free” impedance method, which does not require direct comparison of the current impedance signals with the previously obtained baseline impedance signals, is developed for crack detection in a plate-like structure. The proposed technique utilizes a single pair of PZTs collocated on the opposite surfaces of a structure to extract mode conversion produced by crack formation. Then, a reference-free damage classifier is developed and performed on the extracted mode conversion for instantaneous damage diagnosis. Numerical simulations and experimental tests have been conducted explicitly considering varying temperature and loading conditions to demonstrate the robustness of the proposed damage detection technique under varying operational and environmental conditions.  相似文献   

3.
A scour monitoring system of subsea pipeline is proposed using distributed Brillouin optical sensors based on active thermometry. The system consists in a thermal cable running parallel to the pipeline, which acquires frequency shift of optical sensors during heating and cooling, directly indicating temperature change. The free spans can be detected through the different behaviors of heat transfer between in-water and in-sediment scenarios. Three features were extracted from temperature time histories including magnitude, spatial continuity and temporal stability. Several experimental tests were conducted using the proposed system. The results substantiate the monitoring technique.  相似文献   

4.
Defect imaging using scanning laser source technique has been investigated for a plate with rounded defects and notch-type defects in our previous studies. This paper examines frequency dependence of the defect images with both calculations and experiments in order to acquire clearer images. Both calculation and experimental results for a straight notch revealed that clearer images of notch-type defects can be obtained in the range of low frequency-thickness product below about 200 kHz mm. Moreover, images of the defects of various shapes were obtained by synthesizing images from eight receiving transducers, and similarly to the case of the straight notches, they became more clearly in the low frequency range.  相似文献   

5.
Using the original and ‘symmetrical face’ training samples to perform representation based face recognition was first proposed in [1]. It simultaneously used the original and ‘symmetrical face’ training samples to perform a two-step classification and achieved an outstanding classification result. However, in [1] the “symmetrical face” is devised only for one method. In this paper, we do some improvements on the basis of [1] and combine this “symmetrical faces” transformation with several representation based methods. We exploit all original training samples, left “symmetrical face” training samples and right “symmetrical face” training samples for classification and use the score fusion for ultimate face recognition. The symmetry of the face is first used to generate new samples, which is different from original face image but can really reflect some possible appearance of the face. It effectively overcomes the problem of non-sufficient training samples. The experimental results show that the proposed scheme can be used to improve a number of traditional representation based methods including those that are not presented in the paper.  相似文献   

6.
Identification of dynamic characteristics of local nonlinearities has been aimed in this paper. The spirit of the identification method is established on Optimum Equivalent Linear Frequency response function (OELF). Dynamic behavior of nonlinear elements in system is extracted from OELF using two different techniques. The first technique is “Direct Identification Method” (DIM) in which no pre-assumed model is considered for the nonlinearity's behavior and the second technique is “Model based Identification Method” (MIM). The second technique is introduced with two different formulations, in order to take into account the practical limits due to the inaccessibility of nonlinearity location and/or indeterminability of degree of freedom. Dynamic characteristics of common nonlinearity mechanisms like cubic stiffness, pure slip, and stick-slip have been identified using the proposed technique and it has been shown that, although the proposed identification technique is simple, it does not require any sophisticated measurement hardwares and techniques, as required by most of the identification methods proposed so far. Also, the relation of this technique to harmonic balance method is discussed.  相似文献   

7.
S. Lovejoy  B.P. Watson  D. Schertzer 《Physica A》2009,388(18):3711-3727
In Part I of this paper, we developed asymptotic approximations for single photon scattering in thick, highly heterogeneous, “Log-Lévy” multifractal clouds. In Part II, theoretical multiple scattering predictions are numerically tested using Monte Carlo techniques, which show that, due to long range correlations, the photon paths are “subdiffusive” with the corresponding fractal dimensions tending to increase slowly with mean optical thickness. We develop reasonably accurate statistical relations between N scatter statistics in thick clouds and single scatter statistics in thin clouds. This is explored further using discrete angle radiative transfer (DART) approach in which the radiances decouple into non-interacting families with only four (for 2-D clouds) radiance directions each. Sparse matrix techniques allow for rapid and extremely accurate solutions for the transfer; the accuracy is only limited by the spatial discretization.By “renormalizing” the cloud density, we relate the mean transmission statistics to those of an equivalent homogeneous cloud. This simple idea is remarkably effective because two complicating effects act in contrary directions: the “holes” which lead to increased single scatter transmission and the tendency for multiply scattered photons to become “trapped” in optically dense regions, thus decreasing the overall transmission.  相似文献   

8.
In this study, the active vibration control and configurational optimization of a cylindrical shell are analyzed by using piezoelectric transducers. The piezoelectric patches are attached to the surface of the cylindrical shell. The Rayleigh–Ritz method is used for deriving dynamic modeling of cylindrical shell and piezoelectric sensors and actuators based on the Donnel–Mushtari shell theory. The major goal of this study is to find the optimal locations and orientations of piezoelectric sensors and actuators on the cylindrical shell. The optimization procedure is designed based on desired controllability and observability of each contributed and undesired mode. Further, in order to limit spillover effects, the residual modes are taken into consideration. The optimization variables are the positions and orientations of piezoelectric patches. Genetic algorithm is utilized to evaluate the optimal configurations. In this article, for improving the maximum power and capacity of actuators for amplitude depreciation of negative velocity feedback strategy, we have proposed a new control strategy, called “Saturated Negative Velocity Feedback Rule (SNVF)”. The numerical results show that the optimization procedure is effective for vibration reduction, and specifically, by locating actuators and sensors in their optimal locations and orientations, the vibrations of cylindrical shell are suppressed more quickly.  相似文献   

9.
Magnetorheological (MR) dampers are a promising alternative to structural active actuators as they provide adjustable damping over a wide range of frequencies without large power requirements. However, the complex dynamics that characterizes these devices makes it difficult to formulate control laws based on the MR damper model. Instead, many semiactive control strategies proposed in the literature have been based on the idea of “clipping” the voltage signal so that the MR damper force “tracks” a desired active control force which is computed on-line. With this idea many algorithms have been proposed using, among others, techniques such as optimal control, H control, sliding mode control, backstepping and QFT.This work presents a semiactive control strategy based on the same idea of “clipping” the voltage signal but using a simpler PI design. The proportional and integral gains of the controller are calculated so that the controller guarantees stability, minimization of the closed loop response and robustness against modeling errors. Effectiveness of the control strategy is compared to some others techniques and passive cases as well. Simulation results shows that this simple strategy can effectively improve the structural responses and achieve performance index comparable to that of more complex algorithms.  相似文献   

10.
The aim of this paper is to assess three different measurement techniques applied to the characterization of the acoustic impedance of a Single-Degree-of-Freedom (SDOF) liner installed in nacelle ducts of turbofan engines. The “two-microphones” method, the “in-situ” impedance measurement technique and the “impedance eduction” approach are respectively compared in representative flight environment, characterized by normal and grazing incidence sound, with and without grazing flow. Goal of the study is to collect evidences of the unique and complementary features offered by these techniques, providing deeper insight into their strengths and limitations.  相似文献   

11.
光纤菲佐应变传感器的波分频分复用方法   总被引:9,自引:1,他引:8  
周昌学  饶云江  朱涛 《光学学报》2005,25(11):472-1476
将波分复用技术与空间频率复用技术相结合,提出了新的光纤菲佐应变传感器波分频分复用方法:在粗波分复用(CWDM)的不同波段实现具有不同腔长的光纤菲佐应变传感器的空间频率复用。描述了基于该方法的光纤菲佐应变传感器复用系统的结构、原理及实验结果,讨论了复用技术中可能产生的串扰的影响及其解决方法。实验结果表明,该方法大大提高了光纤菲佐应变传感器的复用能力,可复用40个以上的菲佐应变传感器,且其应变测量精度达±5με,可满足实际应用的要求。  相似文献   

12.
13.
We investigate the electronic properties of metallic (7,7) carbon nanotubes (CNT) in the presence of a variety of tetra- and hexa-vacancy defects, by using the first principles density functional theory (DFT) combined with the non-equilibrium Green’s function technique. From the view point of energetic stability large vacancies tend to split into pentagon and heptagon (5-7) defects. However, this does not preclude the presence of “holes” in the carbon nanotube by the nanoelectronic lithography technique. We show that the states linked to large vacancies hybridize with the extended states of the nanotubes to modify their band structure. As a consequence, the hole-like defects in the CNT lead to more prominent electronic transport compared to the situation in the defective CNT consisting of pentagon-heptagon pair defects. Our study suggests the possibility to improve the electronic properties of a defective carbon nanotube via morphological modifications induced by irradiation techniques.  相似文献   

14.
Quantitative optical techniques for dense sprays investigation: A survey   总被引:2,自引:0,他引:2  
The experimental study of dense sprays by optical techniques poses many challenges and no methods have proven to be completely reliable when accurate quantitative data are required, for example to validate breakup models and CFD simulations. The present survey is aimed to a critical analysis of optical techniques capable to provide quantitative and reliable data in dense sprays and to point out the conditions necessary to safely obtain such measurements. A single parameter, the optical depth, is proposed to quantify the concept of dense spray and to indicate when multiple scattering becomes predominant and could make the experimental results questionable. Many available optical techniques are divided into two categories: the “classical” ones, like PDA, LDV, PIV, etc., that work well in dilute sprays but show many limitations in dense sprays, and the “emerging” ones more suitable for dense sprays. Among the last ones, those considered more promising are discussed in detail. A number of significant applications are also presented and discussed to better clarify the nature of such complex problem and the feasibility of the new proposed approaches.  相似文献   

15.
Electro-magnetic acoustic transducers (EMATs) are intended as non-contact and non-destructive ultrasound transducers for metallic material. The transmitted intensities from EMATS are modest, particularly at notable lift off distances. Some time ago a concept for a “coil only EMAT” was presented, without static magnetic field. In this contribution, such compact “coil only EMATs” with effective areas of 1–5 cm2 were driven to excessive power levels at MHz frequencies, using pulsed power technologies. RF induction currents of 10 kA and tens of Megawatts are applied. With increasing power the electroacoustic conversion efficiency also increases. The total effect is of second order or quadratic, therefore non-linear and progressive, and yields strong ultrasound signals up to kW/cm2 at MHz frequencies in the metal. Even at considerable lift off distances (cm) the ultrasound can be readily detected. Test materials are aluminum, ferromagnetic steel and stainless steel (non-ferromagnetic). Thereby, most metal types are represented. The technique is compared experimentally with other non-contact methods: laser pulse induced ultrasound and spark induced ultrasound, both damaging to the test object’s surface. At small lift off distances, the intensity from this EMAT concept clearly outperforms the laser pulses or heavy spark impacts.  相似文献   

16.
A comparison of three quantitative schlieren techniques   总被引:2,自引:0,他引:2  
We compare the results of three quantitative schlieren techniques applied to the measurement and visualization of a two-dimensional laminar free-convection boundary layer. The techniques applied are Schardin's “calibrated” schlieren technique, in which a weak lens in the field-of-view provides a calibration of light deflection angle to facilitate quantitative measurements, “rainbow schlieren”, in which the magnitude of schlieren deflection is coded by hue in the image, and “background-oriented schlieren” (BOS), in which quantitative schlieren-like results are had from measuring the distortion of a background pattern using digital-image-correlation software. In each case computers and software are applied to process the data, thus streamlining and modernizing the quantitative application of schlieren optics. (BOS, in particular, is only possible with digital-image-correlation software.) Very good results are had with the lens-calibrated standard schlieren method in the flow tested here. BOS likewise produces good results and requires less expensive apparatus than the other methods, but lacks the simplification of parallel light that they feature. Rainbow schlieren suffers some unique drawbacks, including the production of the required rainbow cutoff filter, and provides little significant benefit over the calibrated schlieren technique.  相似文献   

17.
The widely-used numerical modeling approaches such as the finite element method (FEM) and statistical energy analysis (SEA) often have limited applicability to the transmission loss prediction in mid-frequency range. In this paper, a novel hybrid edge-based smoothed FEM coupled with statistical energy analysis (ES-FE-SEA) method is proposed to further improve the accuracy of “mid-frequency” transmission loss predictions. The application of ES-FEM will “soften” the well-known ‘‘overly-stiff’’ behavior in the standard FEM solution and reduce the inherent numerical dispersion error. While the SEA approach deals with the physical uncertainty in the relatively higher frequency range. The plate of interest is appropriately described by an ES-FEM model, due to its relative robustness to perturbations. Its adjacent reverberation cavities are modeled by employing the SEA approach, because of their high model density. The coupling and interaction between SEA subsystems and the FE subsystem is governed by the “reciprocity relationship” theorem. A standard numerical example for benchmarking is examined and excellent agreement was achieved between the prediction and reference results. The proposed ES-FE-SEA is also verified by various numerical examples. The method is finally applied to the modeling a complicated engineering problem–acoustic fields on both sides of the front windshield in a passenger car.  相似文献   

18.
The optimalizing physical and mechanical conditions of the pneumatic method of transfer of dispersed solid materials, conforming to the regular piston regime of motion of dispersed solid materials in the transporting pipeline are discussed. The investigation of the flow of the compressible heterogeneous medium in the pipeline, under the piston condition of motion of the mass being transported, is presented in unidimensional statement of the problem. Specific data obtained on the electronic computer indicate the existence of an important expansion of technical possibilities in the high-pressure transport in long range transportation and its efficiency.Translated from Izvestiya VUZ, Fizika, No. 3, pp. 17–22, March, 1973.  相似文献   

19.
The viability and operation of evanescent field-based optical fibre sensors is largely determined by the fraction of the total supported modal field power in the evanescent field. As this fraction is highly dependent on the refractive index profile of the fibre, one design strategy for fibre sensors is to maximize this field power fraction over the class of all refractive index profiles. This paper documents this design strategy for circular geometry optical fibres, where the goal is to maximize the evanescent field power fraction for a particular mode via the selection of an optimal refractive index profile. The axially symmetric profiles obtained approximate “holey” annular structures, the performance of which can be validated using existing waveguide analysis techniques.  相似文献   

20.
A theoretical formalism describing the formation of images in a linear shift invariant X-ray optical system is derived within the wave-optical theory. It is applicable to a non-crystalline object consisting of two types of features, with the characteristic sizes which are respectively not smaller and much smaller than the resolution of the imaging system. This formalism is then applied to two phase-contrast imaging techniques, the propagation-based and analyser-based imaging. The obtained formulae for the intensity distribution in the image well explain the “decoherence effect” which is observed in the former technique and the “extinction contrast” which is a characteristic of the latter technique. This formalism is shown to be in good agreement with the results of the accurate numerical simulations, using rigorous wave-optical theory, of the propagation-based and analyser-based phase-contrast images of the model objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号