首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper suggests a new ultrasonic-based enhanced oil recovery (EOR) model for application in oil field reservoirs. The model is modular and consists of an acoustic module and a heat transfer module, where the heat distribution is updated when the temperature rise exceeds 1 °C. The model also considers the main EOR parameters which includes both the geophysical (i.e., porosity, permeability, temperature rise, and fluid viscosity) and acoustical (e.g., acoustic penetration and pressure distribution in various fluids and mediums) properties of the wells. Extended experiments were performed using powerful ultrasonic waves which were applied for different kind of oils & oil saturated core samples. The corresponding results showed a good matching with those obtained from simulations, validating the suggested model to some extent. Hence, a good recovery rate of around 88.2% of original oil in place (OOIP) was obtained after 30 min of continuous generation of ultrasonic waves. This leads to consider the ultrasonic-based EOR as another tangible solution for EOR. This claim is supported further by considering several injection wells where the simulation results indicate that with four (4) injection wells; the recovery rate may increase up-to 96.7% of OOIP. This leads to claim the high potential of ultrasonic-based EOR as compared to the conventional methods. Following this study, the paper also proposes a large scale ultrasonic-based EOR hardware system for installation in oil fields.  相似文献   

2.
In the present study, heavy oil viscosity reduction in Daqing oil field was investigated by using an ultrasonic static mixer. The influence of the ultrasonic power on the viscosity reduction rate was investigated and the optimal technological conditions were determined for the ultrasonic treatment. The mechanism for ultrasonic viscosity reduction was analyzed. The flow characteristics of heavy oil in the mixer under the effect of cavitation were investigated using numerical modeling, and energy consumptions were calculated during the ultrasonic treatment and vis-breaking processes. The experimental results indicated that the ultrasonic power made the largest impact on the viscosity reduction rate, followed by the reaction time and temperature. The highest viscosity reduction rate was 57.34%. Vacuole was migrated from the axis to the wall along the fluid, accelerating the two-phase transmission and enhancing the radial flow of the fluid, which significantly improved the ultrasonic viscosity reduction. Compared to the vis-breaking process, the energy consumption of ultrasonic treatment process was 43.03% lower when dealing with the same quality heavy oil. The optimal process conditions were found to be as follows: ultrasonic power of 1.8 kW, reaction time of 45 min and reaction temperature of 360 °C. The dissociation of the molecules of heavy oil after ultrasonication has been checked. After being kept at room temperature 12 days, some light components were produced by the cavitation cracking, so the viscosity of the residual oil could not return to that of the original residual oil, which meant that the “cage effect” was not reformed.  相似文献   

3.
Roberts  P. M. 《Acoustical Physics》2005,51(1):S140-S148
It has been observed repeatedly that low-frequency (1–500 Hz) seismic stress waves can enhance oil production from depleted reservoirs and contaminant extraction from groundwater aquifers. The physics coupling stress waves to fluid flow behavior in porous media is not understood, although numerous physical mechanisms have been proposed to explain the observations. To quantify the effects of low-frequency, dynamic-stress stimulation on multiphase fluid flow and in situ particle behavior in porous media, laboratory experiments were conducted with a core flow stimulation apparatus that allows for precise control and measurement of applied stress and strain, static confinement, and fluid flow parameters. Results are reported for experiments on stimulated single-phase and two-phase fluid flow behavior in 2.54-cm-diameter Berea sandstone cores. For all experiments, stimulation was applied to the cores in the form of sinusoidal, axial, mechanical stress coupled to the solid porous matrix at frequencies of 25 to 75 Hz. Applied stress RMS amplitudes ranged from 300 to 1200 kPa and, at these levels, produced coupled, pore-pressure fluctuations of much less than 1.2 to 4.8 kPa, respectively. During single-phase brine flow, stimulation increased the absolute permeability of the rock by 10–20%. This was caused by mobilizing in situ clay particles that were partially plugging the pore throats. During two-phase, steady-state, constant-rate flow of oil-brine and decane-brine mixtures, stimulation caused significant changes in the bulk fluid pressure drop across the core. The pressure changes showed a strong dependence on the viscosity of the nonwetting fluid phase (oil or decane) relative to the wetting phase (brine). This may indicate that relative changes in the mobility of wetting versus nonwetting fluid phases were induced by the dynamic stress. Under the specific experimental conditions used, pore-scale particle perturbation and altered wettability are possible physical mechanisms that can explain the results.  相似文献   

4.
Theoretical and experimental investigations of powerful ultrasonic beams self-focusing in liquids are described. Calculations of the conditions to observe self-action as a result of sound-induced heating of liquids are reported. The effects of controlled self-action of ultrasonic waves in high-viscosity liquids are demonstrated in experiments. A hydrodynamic mechanism of the acoustic dispersion technique is developed. The rate of this process, as a function of ultrasound intensity, including the effects of self-focusing and self-transparency, is evaluated.  相似文献   

5.
The effect of ultrasound on flow through a capillary using the pendant drop method was investigated. Water was injected into a 0.1 mm Hastelloy C-276 capillary tube submersed into several mineral oils with different viscosity, and kerosene. The average drop rate per minute was measured at several ultrasonic intensities. We observed that there exists a peak drop rate at a characteristic intensity, which strongly depends on oil viscosity and the interfacial tension between water and the oil. The semi-quantitative results reveal that the remarkable change in the interfacial forces between oil and water could be the explanation to the enhancement of oil recovery when the ultrasonic waves are applied.  相似文献   

6.
The experimental characterization of gravity-capillary waves excited at an interface between two immiscible liquids by a periodic sequence of focused ultrasound pulses propagating perpendicular to the interface is presented. The experiments have been performed in a glass cylinder filled with two liquids: Fluorinert FC70 and silicone oil. The spatial and temporal evolution of the interface deformation is recorded by a high-speed video camera. The effect of the duration and amplitude of ultrasound pulses on the amplitude and shape of interfacial oscillations is analyzed. Prospects of the proposed approach and possible applications of the observed phenomena are discussed.  相似文献   

7.
Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10 °C to 40 °C using ultrasonic measuring setup. Bleustein–Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids.  相似文献   

8.
An on-line sensor to measure the density of a liquid or slurry, based on longitudinal wave reflection at the solid-fluid interface, has been developed by the staff at Pacific Northwest National Laboratory. The objective of this research is to employ shear wave reflection at the solid-fluid interface to provide an on-line measurement of viscosity as well. Both measurements are of great interest for process control in many industries. Shear wave reflection measurements were conducted for a variety of liquids. By analyzing multiple reflections within the solid (only 0.63 cm thick-similar to pipe wall thickness) we increased the sensitivity of the measurement. At the sixth echo, sensitivity was increased sufficiently and this echo was used for fluid interrogation. Shear wave propagation of ultrasound in liquids is dependent upon the viscosity and the shear modulus. The data are analyzed using the theory for light liquids (such as water and sugar water solutions) and also using the theory for highly viscous liquids (such as silicone oils). The results show that, for light liquids, the shear wave reflection measurements interrogate the viscosity. However, for highly viscous liquids, it is the shear wave modulus that dominates the shear wave reflection. Since the density is known, the shear wave velocity in the liquid can be determined from the shear wave modulus. The results show that shear wave velocities in silicone oils are very small and range from 315 to 2389 cm/s. Shear wave reflection measurements are perhaps the only way that shear wave velocity in liquids can be determined, because the shear waves in liquids are highly attenuated. These results show that, depending on the fluid characteristics, either the viscosity or the shear wave velocity can be used for process control. There are several novel features of this sensor: (1) The sensor can be mounted as part of the wall of a pipeline or tank or submerged in a tank. (2) The sensor is very compact and can be located within the process stream. (3) The sensor can interrogate and characterize very attenuative liquids or slurries because the sensor operation depends upon reflection at the interface between the solid and the fluid, rather than on transmission through a liquid. (4) The sensor performance is not affected by fluid flow rate, entrained air, or vibration.  相似文献   

9.
Power ultrasound, as an emerging green technology has received increasing attention of the petroleum industry. The physical and chemical effects of the periodic oscillation and implosion of acoustic cavitation bubbles can be employed to perform a variety of functions. Herein, the mechanisms and effects of acoustic cavitation are presented. In addition, the applications of power ultrasound in the petroleum industry are discussed in detail, including enhanced oil recovery, oil sand extraction, demulsification, viscosity reduction, oily wastewater treatment and oily sludge treatment. From the perspective of industrial background, key issue and resolution mechanism, current applications and future development of power ultrasound are discussed. In addition, the effects of acoustic parameters on treatment efficiency, such as frequency, acoustic intensity and treatment time are analyzed. Finally, the challenges and outlook for industrial application of power ultrasound are discussed.  相似文献   

10.
Water flooding is one of widely used technique to improve oil recovery from conventional reservoirs, but its performance in low-permeability reservoirs is barely satisfactory. Besides adding chemical agents, ultrasonic wave is an effective and environmental-friendly strategy to assist in water flooding for enhanced oil recovery (EOR) in unconventional reservoirs. The acoustic frequency plays a dominating role in the EOR performance of ultrasonic wave and is usually optimized through a series of time-consuming laboratory experiments. Hence, this study proposes an unsupervised learning method to group low-permeability cores in terms of permeability, porosity and wettability. This grouping algorithm succeeds to classify the 100 natural cores adopted in this study into five categories and the water flooding experiment certificates the accuracy and reliability of the clustering results. It is proved that ultrasonic waves can further improve the oil recovery yielded by water-flooding, especially in the oil-wet and weakly water-wet low-permeability cores. Furthermore, we investigated the EOR mechanism of ultrasonic waves in the low-permeability reservoir via scanning electron microscope observation, infrared characterization, interfacial tension and oil viscosity measurement. Although ultrasonic waves cannot ameliorate the components of light oil as dramatically as those of heavy oil, such compound changes still contribute to the oil viscosity and oil-water interfacial tension reductions. More importantly, ultrasonic waves may modify the micromorphology of low-permeability cores and improve the pore connectivity.  相似文献   

11.
超声波对多孔介质中两相流动的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
近年来,超声技术已被应用于采油工程中,在油井解堵,水井增注等方面发挥了重要的作用。  相似文献   

12.
This study explored the potential application of xanthan gum as a polymer-flooding agent for oil recovery applications in a specific Devonian oil field. Rheological measurements using oscillatory and steady shear were carried out to examine the change in shear viscosity when the polymer was applied under reservoir conditions. The xanthan rheological properties were described by the Herschel–Bulkley and Ostwald models to characterize its non-Newtonian behavior. As expected, the results showed that higher xanthan concentrations raised the polymer viscosity and increased the degree of shear thinning. Addition of alkalis caused the viscosity of the xanthan solutions to decrease, but they maintained their shear-thinning properties. Polymer solutions in typical oil field brine increased in viscosity by ca. 400% for 720 hours storage time. On the other hand, as expected, the solutions lost their viscosity gradually with increasing temperature. However, at reservoir temperature (68°C), the polymer solutions kept more than 60% of their initial viscosity. In oscillatory deformation tests it was observed that all the measured viscoelastic properties were influenced by temperature and confirmed that xanthan solution behaved as a weak-gel. An order-disorder transition exists within the xanthan-brine solutions which responds to changes in solution concentration, temperature and alkalis.  相似文献   

13.
There has been consistent drive towards research and innovation in oil production technologies in order to achieve improved effectiveness and efficiency in their operation. This drive has resulted in breakthrough in technologies such as the application of ultrasound (US) in demulsification and enhanced oil recovery (EOR), and usage of high-volume hydraulic fracturing and special horizontal well for shale oil and gas extraction. These can be observed in the increment in the number of commercial oil technologies such as EOR projects that rose from 237 in 1996 to 375 in 2017. This sustained expansion in EOR resulted in their total oil production rising from 1.5 million barrels per day in 2005 to 2.3 million barrels per day in 2020. And this is predicted to increase to about 4.7 million barrels per day in 2040, which represent about 4% of total production. Consequently, in this review, the developments in the utilization of US either as standalone or integrated with other technologies in EOR and dehydration of water in oil emulsions were analyzed. The studies include the optimization of fluid and US properties in EOR and demulsification. Reports on the treatment of formation damage resulting from inorganic salts, organic scales, drilling fluid plugs, condensate, paraffin wax and colloidal particle with US-assisted EOR were also highlighted. Moreover, the mechanisms were examined in order to gain insightful understanding and to aid research investigations in these areas. Technologies such as US assisted green demulsification, high intensity focused ultrasound, and potential pathways in field studies were assessed for their feasibilities. It is essential to evaluate these technologies due to the significant accrued benefits in them. The usage of green demulsifiers such as deep eutectic solvents, ionic liquids and bio-demulsifiers has promising future outlook and US could enhance their technical advancement. HiFU has been applied successfully in clinical research and developments in this area can potentiality improve demulsification and interfacial studies (fluid–fluid and solid–fluid interactions). As regards field studies, there is need to increase actual well investigations because present reports have few on-site measurements with most studies being in laboratory scale. Furthermore, there is need for more detailed modeling of these technologies as it would assist in conserving resources, saving research time and fast-tracking oil production. Additional evaluative studies of conditions such as the usage of Raschig rings, crude oil salinity and high temperature which have improved demulsification of crude oil emulsions should be pursued.  相似文献   

14.
粘性液体中激光空泡辐射声波的特性研究   总被引:6,自引:6,他引:0  
通过PZT水听器对不同粘度粘性液体中激光空泡脉动辐射的声波特性进行了实验,获得了粘性液体中激光泡声波并进行分析.分析结果表明:激光空泡在脉动过程中辐射的声波将受液体粘性影响,粘性系数越大,辐射声波强度越弱,峰值频率呈现增大的趋势.  相似文献   

15.
Ultrasound technique is one of the unconventional enhanced oil recovery methods which has been of interest for more than six decades. However, the majority of the oil recovery mechanisms under ultrasound reported in the previous studies are theoretical. Emulsification is one of the mechanisms happening at the interface of oil and water in porous media under ultrasound. Oppositely, ultrasound is one of the techniques using in oil industry for demulsification of oil/water emulsion. Therefore, the conditions in which emulsification becomes dominant over demulsification under ultrasound should be more investigated. Duration of ultrasound radiation could be one of the factors affecting emulsification and demulsification processes. In this study a technique was developed to investigate the effect of long and short period of ultrasound radiation on emulsification and demulsification of paraffin oil and surfactant solution in porous media. For this purpose, the 2D glass Hele-shaw models were placed inside the ultrasonic bath under long and short period of radiation of ultrasound. A microscope was used above the model for microscopic studies on the interface of oil and water. Diffusion of phases and formation of emulsion were observed in both long and short period of application of ultrasound at the beginning of ultrasound radiation. However, by passing time, demulsification and coalescence of brine droplets inside emulsion was initiated in long period of ultrasound application. Therefore, it was concluded that emulsification could be one of the significant oil recovery mechanisms happening in porous media under short period of application of ultrasound.  相似文献   

16.
This paper presents a series of experiments conducted to assess the potential of smouldering combustion as a novel technology for remediation of contaminated land by water-immiscible organic compounds. The results from a detailed study of the conditions under which a smouldering reaction propagates in sand embedded with coal tar are presented. The objective of the study is to provide further understanding of the governing mechanisms of smouldering combustion of liquids in porous media. A small-scale apparatus consisting of a 100-mm in diameter quartz cylinder arranged in an upward configuration was used for the experiments. Thermocouple measurements and visible digital imaging served to track and characterize the ignition and propagation of the smouldering reaction. These two diagnostics are combined here to provide valuable information on the development of the reaction front. Post-treatment analyses of the sand were used to assess the amount of coal tar remaining in the soil. Experiments explored a range of inlet airflows and fuel concentrations. The smouldering ignition of coal tar was achieved for all the conditions presented here and self-sustained propagation was established after the igniter was turned off. It was found that the combustion is oxygen limited and peak temperatures in the range 800–1080 °C were observed. The peak temperature increased with the airflow at the lower range of flows but decreased with airflow at the higher range of flows. Higher airflows were found to produce faster propagation. Higher fuel concentrations were found to produce higher peak temperatures and slower propagation. The measured mass removal of coal tar was above 99% for sand obtained from the core and 98% for sand in the periphery of the apparatus.  相似文献   

17.
The effect of low frequency power ultrasound on Nafion® ionomer used for fabricating proton exchange membrane fuel cell (PEMFC) and water electrolyzer (PEMWE) catalyst inks was investigated. In this study, a series of Nafion® dispersions having three concentrations (10, 5, and 2.5% w/v) were studied under various irradiation durations (tus), at fixed ultrasonic frequency (f = 42 kHz) and ultrasonic power (P > 2 W), under either controlled or unregulated bulk solution temperature conditions using a laboratory ultrasonic cleaning bath. Viscosity (η), thermal degradation, and glass transition temperature (Tg) for all Nafion® dispersion samples was measured and compared to untreated Nafion® samples. In our conditions, it was found that power ultrasound lowered the viscosity of all tested Nafion® dispersion samples; whilst thermogravimetric and differential scanning calorimetry analyses showed that for all ultrasonically irradiated samples, a negligible overall polymer degradation and no obvious change in Tg was observed under controlled and unregulated bulk temperature conditions. It was found that it is possible that acoustic cavitation causes depolymerisation followed by a polymerisation initiation step during ultrasonication. By comparing the ultrasonically treated and high-shear mixed samples, it was also observed that acoustic and hydrodynamic cavitation played an important role in the reduction of dispersion viscosity.  相似文献   

18.
When immiscible liquids are subjected to an ultrasonic field, they form emulsions. This principle has been used to improve the mass transfer characteristics of a liquid-liquid extraction process in microreactor systems. The formation of emulsion and its characteristics are prominently dependent on the properties of the liquids used and this also holds true for emulsion brought about by ultrasound. This paper focuses on the properties of fluids that are reported to have an influence on the cavitation behaviour, namely viscosity, interfacial tension and vapour pressure. These properties were examined by changing the solvent of the organic phase in the hydrolysis of p-nitrophenyl acetate. The study is performed by comparing pairs of solvents that are different in one property but similar in the other two. The pairs selected are toluene – chlorobenzene for viscosity, toluene – methyl Isobutyl ketone for interfacial tension and methyl isobutyl ketone – 2-Methyl tetrahydrofuran for vapour pressure effects. A qualitative study was performed with a high-speed camera in flow to understand the emulsification initiation mechanisms and behaviours. These findings were further explored by performing the sonicated emulsion in a batch-sonicated reactor. The quantitative analysis of the fluid properties was evaluated and compared based on the relative percentage increase in yield upon sonication with respect to their individual silent conditions. The quantitative results were further supported by the quantification of the emulsion performed with an FBRM probe. The results indicate a two times improvement in yield with solvent of lower viscosity as 2 times more droplets were formed in the emulsion. Both the solvent systems with higher interfacial tension and vapour pressure had an improved yield of 1.4 times owing to larger number of droplets formed.  相似文献   

19.
The effects of water addition and temperature on some physicochemical properties of room temperature ionic liquids containing chromium chloride, choline chloride and water in the molar ratio of 1:2.5:x (where x = 6, 9, 12, 15 or 18) have been studied. The density, viscosity, surface tension and conductivity of the liquid mixtures were measured for the temperature range of 25 to 80 °C. Increasing both water content and temperature resulted in decreasing density, surface tension and viscosity and increasing electrical conductivity. The average void radii (hole sizes) for the liquid systems under study were calculated; they were in the range of 1.21 to 1.82 Å. The average hole size was stated to grow with increasing both temperature and water content in the mixture. The variation of the average void radii correlates with the change in viscosity and conductivity. The activation energies of viscous flow and conductivity diminishes with increasing water content in the liquid mixture. There is a strong linear correlation between conductivity and fluidity which indicates that the conductivity of the ionic liquid mixtures is generally controlled by the ionic mobility. A moderate viscosity and higher conductivity of the Cr(III)-containing ionic liquids with extra-water addition (at x > 9) make them suitable for the development of chromium electrodeposition processes.  相似文献   

20.
The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (~200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (~20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号