首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-frequency magnetic properties of ferromagnetic composite wires were studied with and without coating by ferrofluid. Non-magnetic CuBe wires of 0.1 mm diameter were electroplated with FeCoNi layer of 1 μm thickness. Magnetization curves were measured in the frequency range of 10 Hz–3 kHz. The composite CuBe/FeCoNi/ferrofluid material shows a hysteretic behaviour in a small field. The hysteresis loop of ferrofluid covered electroplated wire is not a simple sum of the ferrofluid “wire” plus non-covered wire signals. It indicates an interaction between magnetic wire and ferrofluid which can be revealed by low-frequency measurements. The combination “electroplated wire/ferrofluid” can be considered as a new type of composite magnetic material consisting of solid magnetic core coated by complementary liquid magnetic material. Low-frequency measurements in presence of ferrofluid can be a useful method to study magnetic properties of ferromagnets.  相似文献   

2.
The assessment of elastic properties in children’s cortical bone is a major challenge for biomechanical engineering community, more widely for health care professionals. Even with classical clinical modalities such as X-ray tomography, MRI, and/or echography, inappropriate diagnosis can result from the lack of reference values for children bone. This study provides values for elastic properties of cortical bone in children using ultrasonic and mechanical measurements, and compares them with adult values. 18 fibula samples from 8 children (5–16 years old, mean age 10.6 years old ±4.4) were compared to 16 fibula samples from 3 elderly adults (more than 65 years old). First, the dynamic modulus of elasticity (Edyn) and Poisson’s ratio (ν) are evaluated via an ultrasonic method. Second, the static modulus of elasticity (Esta) is estimated from a 3-point microbending test. The mean values of longitudinal and transverse wave velocities measured at 10 MHz for the children’s samples are respectively 3.2 mm/μs (±0.5) and 1.8 mm/μs (±0.1); for the elderly adults’ samples, velocities are respectively 3.5 mm/μs (±0.2) and 1.9 mm/μs (±0.09). The mean Edyn and the mean Esta for the children’s samples are respectively 15.5 GPa (±3.4) and 9.1 GPa (±3.5); for the elderly adults’ samples, they are respectively 16.7 GPa (±1.9) and 5.8 GPa (±2.1). Edyn, ν and Esta are in the same range for children’s and elderly adults’ bone without any parametric statistical difference; a ranking correlation between Edyn and Esta is shown for the first time.  相似文献   

3.
Ni-based WC composite coatings by laser induction hybrid rapid cladding (LIHRC) with elliptical spot were investigated. Results indicate that the efficiency using the elliptical spot of 6 mm × 4 mm (the major and minor axis of laser beam are 6 mm and 4 mm, respectively, the major axis is parallel to the direction of laser scanning) is higher than that using the elliptical spot of 4 mm × 6 mm (the major axis is perpendicular to the direction of laser scanning). The precipitated carbides with the blocky and bar-like shape indicate that WC particles suffer from the heat damage of “the disintegration pattern + the growth pattern”, whichever elliptical spot is used at low laser scanning speed. However, at high laser scanning speed, the blocky carbides are only formed if the elliptical spot of 6 mm × 4 mm is adopted, showing that WC particles present the heat damage of “the disintegration pattern”, whereas the fine carbides are precipitated when the elliptical spot of 4 mm × 6 mm is used, showing that WC particles take on the heat damage of “the radiation pattern”. Especially, the efficiency of LIHRC is increased much four times higher than that of the general laser cladding and crack-free ceramic-metal coatings can be obtained.  相似文献   

4.
Monodisperse spherical core–shell particles of Cr/α-Cr2O3 with high adhesion were successfully coated on rough copper substrates by a simple self-assembly-like method for the use in solar thermal absorbers. The structure and morphology of the core-shell particles of Cr/α-Cr2O3 were effectively controlled by deposition temperature and the pH of the initial precursor solution. Their characterizations were carried out with X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry and attenuated total reflection, as well as UV–vis diffuse reflectance spectroscopy. The samples aged for more than 40 h at 75 °C exhibit the targeted high absorbing optical characteristic “Black chrome” while those aged for 40 h show a significant high UV–vis diffuse reflectance “green color”.  相似文献   

5.
Superconducting Pb(x)/Au(25 nm) bilayers (x = 50, 100 nm) patterned with antidot lattices exhibit various matching field anomalies depending on experimental conditions. Magnetization peaks at applied fields H = n[20 Oe] (n = integer) resemble superconducting wire network data; cusps are also observed, consistent with predictions of “giant” vortices in low-kappa films. Sharp “staircase” anomalies spaced by 1–3 Oe are observed in AC magnetization, possibly a result of depinning of intermediate state domains, or macroscopic quantum tunneling between reproducible states of different quantized flux.  相似文献   

6.
We study the effect of the magnetic field on the pairing state competition in organic conductors (TMTSF)2X by applying random phase approximation to a quasi-one-dimensional extended Hubbard model. We show that the singlet pairing, triplet pairing and the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) superconducting states may compete when charge fluctuations coexist with spin fluctuations. This rises a possibility of a consecutive transition from singlet pairing to FFLO state and further to Sz = 1 triplet pairing upon increasing the magnetic field. We also show that the singlet and Sz = 0 triplet components of the gap function in the FFLO state have “d-wave” and “f-wave” forms, respectively, which are strongly mixed.  相似文献   

7.
Our objective is to evaluate an ultrasound probe for measurements of velocity and anisotropy in human cortical bone (tibia). The anisotropy of cortical bone is a known and mechanically relevant property in the context of osteoporotic fracture risk. Current in vivo quantitative ultrasound devices measuring the velocity of ultrasound in long bones can only be applied in the axial direction. For anisotropy measurements a second direction for velocity measurements preferably perpendicular to the axial direction is necessary. We developed a new ultrasound probe which permits axial transmission measurements with a simultaneous second perpendicular direction (tangential). Anisotropy measurements were performed on isotropic and anisotropic phantoms and two excised human female tibiae (age 63 and 82). Anisotropy ratios (AI; ratio of squared ultrasound velocities in the two directions) were for the isotropic phantom 1.06 ± 0.01 and for the anisotropic phantom 1.14 ± 0.03 (mean ± standard deviation). AI was 1.83 ± 0.29 in the tibia from the older donor and 1.37 ± 0.18 in the tibia from the younger donor. The AIs were in the expected range and differed significantly (p < 0.05, t-test) between the tibiae. Measured sound velocities were reproducible (mean standard deviation of short time precision of both channels for phantom measurements 31 m/s) and in agreement with reported velocities of the phantom material. Our results document the feasibility of anisotropy measurements at long bones using a single probe. Further improvements in the design of the probe and tests in vivo are warranted. If this approach can be evaluated in vivo an additional tool for assessing the bone status is available for clinical use.  相似文献   

8.
Methods of measuring ultrasonic wave velocity in an elastic sample require data on the thickness of the sample and/or the distances between the transducers and the sample. The uncertainty of the ultrasonic wave velocity measurements generally depends on that of the data available. Conversely, to determine the thickness of a material, it is necessary to have a priori information about the wave velocity. This problem is particularly hard to solve when measuring the parameters of biological specimens such as bones having a greater acoustical impedance contrast (typically 3-5 MRayl) than that of the surrounding soft tissues (typically 1.5 MRayl). Measurements of this kind cannot easily be performed. But obtaining the thickness of a bone structure and/or the ultrasonic wave velocity is a important problem, for example, in biomechanical field for the calculation of elastic modulus, or in acoustical imaging field to parameterize the images, and to reference the grey or color level set to a physical parameter.The aim of the present study was to develop a method of simultaneously and independently determining the velocity of an ultrasonic wave in an elastic sample and the wave path across the thickness of this sample, using only one acquisition in pure transmission mode. The new method, which we have called the “Wavelet-Based Processing” method, is based on the wavelet decomposition of the signals and on a suitable transmitted incident wave correlated with the experimental device, and the mathematical properties such as orthonormality, of which lend themselves well to the time-scale approach. By following an adapted algorithm, ultrasonic wave velocities in parallelepipedic plates of elastic manufactured material and the apparent thicknesses were both measured using a water tank, a mechanical device and a matched pair of 1 MHz ultrasonic focused transducers having a diameter of 3 mm, a focal length of 150 mm and beam width of 2 × 2 mm at the focus (mean temperature 22°). The results were compared with those obtained with a conventional Pulse-mode method and with the control values, to check their validity. Measurements performed on bovine and human dry cortical bone samples are also presented to assess the limitations of the method when it is applied to elastic biological samples, including those of an equal-wavelength size (≈1.5 mm). The thicknesses and the ultrasonic wave velocities were then measured in this kind of (quasi-) parallelepipedic elastic materials with an mean estimated error ranged from 1% to 3.5% compared to the referenced values.  相似文献   

9.
The potential-induced (1 × 1) → “hex” transition on Au(1 0 0) electrodes in 0.01 M Na2SO4 + 1 mM HCl was studied by in situ scanning tunneling microscopy at high time resolution (Video-STM). According to these observations the elementary units of the “hex” surface reconstruction, hexagonally-ordered strings in the Au surface layer, are highly dynamic nanoscale objects. Isolated “hex” strings exhibit dynamic fluctuations in structure and position on the millisecond timescale. These fluctuations exceed the mobility of multistring “hex” domains by several orders of magnitude and can be explained by collective dynamic processes within the strings. Furthermore, the observations reveal a novel 1D mass transport mechanism along the strings, details on the nucleation and growth of “hex” strings and complex string restructuring processes, facilitating “hex” domain ripening.  相似文献   

10.
We have investigated the origin of “atomically flat” and “single-crystalline” growth of Bi films on Si(1 1 1)-7 × 7 through comparative experiments using Si(1 1 1)-β-√3 × √3-Bi as a control system. On the Si(1 1 1)-7 × 7 substrate, the majority of initial nuclei stabilize with pseudocubic (PC) paired layers analogous to the black phosphorus (BP) structure, and grow in a strong two-dimensional fashion that results in a “textured” but “atomically flat” surface morphology. After the coalescence of the BP-like grains at a nominal thickness of 4 monolayers (ML), a tiny number of minority hexagonal (HEX) bulk crystal nuclei, aligned commensurately with the substrate 7 × 7 lattice, cause the “textured” BP-like PC film to transform into a “single-crystalline” bulk-like HEX film. On the Si(1 1 1)-β-√3 × √3-Bi substrate, however, the BP-like structure breaks up into a conventional bulk-like PC structure and the HEX nucleation is suppressed up to as thick as ∼6 ML. Therefore, the morphology and crystallinity of the films are simply rough and polycrystalline, respectively.  相似文献   

11.
We show that the “two-dimensional” graphene is stable due to transverse short-range displacements of carbon atoms, which may be described in a framework of Ising model with competing interactions. When temperature decreases, two transitions, high temperature disorder into order and order into low-temperature glass, arise. The graphene looks like a microscopic “washboard” with the wavelength of about 2–4 Å. Due to up–down asymmetry of the lattice distortions in graphene on substrate, a mini-bandgap arises. This leads to many new phenomena: a rectification of AC current induced by microwave or infrared radiation, the existence of self-trapping and a new type of fermionic mini-exciton-polaritons.  相似文献   

12.
In 1980, Kleiser and Schumann introduced a novel influence-matrix method to treat the incompressibility and no-slip boundary conditions when solving the Navier–Stokes equations. They also outlined the related “tau” error correction technique which is essential for the high accuracy direct numerical simulation (DNS) of turbulent flows. However, their method is not valid for Robin type velocity boundary conditions (i.e., B(u) = αu + βu′ − γ = 0). In this note, a new influence-matrix method is introduced where the boundary condition and “tau” correction are enforced in one step using an extended influence matrix. The new method is simple and easy to be implemented. It broadens the applicability of the Kleiser and Schumann method. Examples with the new method show excellent agreement with data in the literature and the velocity field is divergence free up to machine precision.  相似文献   

13.
The behaviour of ferromagnetic materials under very low magnetic field was investigated more than a century ago by Lord Rayleigh. However, it has been shown since that the so-called Rayleigh law fails for very low magnetic fields, although the explanation for this phenomenon was not given. An anomalous BH behaviour at very low alternating peak flux density in conventional grain-oriented (GO) and non-oriented (NO) electrical steels is reported. It has been found that the initial permeability is constant for all the measured frequencies (from 20 to 400 Hz) at peak flux density below 0.1 mT, and in this region the magnetisation is almost reversible (for both GO and NO). At higher flux density the BH loops become visibly irreversible, with a relatively narrow (for GO) or very wide (for NO) transition region. For GO the BH loop becomes visibly “distorted” for all frequencies at around 2 mT. The eddy current loss calculated from the so-called “classical” equation gives values higher than the measured total losses at lower frequencies. Both these measured results are difficult to explain.  相似文献   

14.
The borohydride reduction method was used to synthesize the Fe-based alloy nanoparticles in an aqueous medium for MR fluids. The effect of ethanol content in the reaction medium on the synthesis of Fe–Co–B nanoparticles was studied first. With increasing the ethanol content from 0 to 40 vol%, the average diameters of Fe–Co–B nanoparticles were decreased from 170 to 35 nm. The possible mechanism for the effect of ethanol has been proposed. Among the four types of Fe-based alloys particles synthesized in this work, Fe–B had the highest magnetization saturation Ms, while Ms decreased in an order of Fe–B>Fe–Co–B>Fe–Cr–B>Fe–Ni–B. A magnetic field of 3000 Oe was able to increase Ms by about 5–6% for each type of iron-based alloy. Under a magnetic field, chain structures of nanoparticles were always formed. When a strong magnetic field such as 3000 Oe was applied, the particles were “squeezed” into chains.  相似文献   

15.
Phospholipid encapsulated microbubbles are widely employed as clinical diagnostic ultrasound contrast agents in the 1–5 MHz range, and are increasingly employed at higher ultrasound transmit frequencies. The stiffness and viscosity of the encapsulating “shells” have been shown to play a central role in determining both the linear and nonlinear response of microbubbles to ultrasound. At lower frequencies, recent studies have suggested that shell properties can be frequency dependent. At present, there is only limited knowledge of how the viscoelastic properties of phospholipid shells scale at higher frequencies. In this study, four batches of in-house phospholipid encapsulated microbubbles were fabricated with decreasing volume-weighted mean diameters of 3.20, 2.07, 1.82 and 1.61 μm. Attenuation experiments were conducted in order to assess the frequency-dependent response of each batch, resulting in resonant peaks in response at 4.2, 8.9, 12.6 and 19.5 MHz, respectively. With knowledge of the size measurements, the attenuation spectra were then fitted with a standard linearized bubble model in order to estimate the microbubble shell stiffness Sp and shell viscosity Sf, resulting in a slight increase in Sp (1.53–1.76 N/m) and a substantial decrease in Sf (0.29 × 106–0.08 × 10−6 kg/s) with increasing frequency. These results performed on a single phospholipid agent show that frequency dependent shell properties persist at high frequencies (up to 19.5 MHz).  相似文献   

16.
A new method for two-dimensional acoustic impedance imaging for biological tissue characterization with micro-scale resolution was proposed. A biological tissue was placed on a plastic substrate with a thickness of 0.5 mm. A focused acoustic pulse with a wide frequency band was irradiated from the “rear side” of the substrate. In order to generate the acoustic wave, an electric pulse with two nanoseconds in width was applied to a PVDF-TrFE type transducer. The component of echo intensity at an appropriate frequency was extracted from the signal received at the same transducer, by performing a time–frequency domain analysis. The spectrum intensity was interpreted into local acoustic impedance of the target tissue. The acoustic impedance of the substrate was carefully assessed prior to the measurement, since it strongly affects the echo intensity. In addition, a calibration was performed using a reference material of which acoustic impedance was known. The reference material was attached on the same substrate at different position in the field of view. An acoustic impedance microscopy with 200 × 200 pixels, its typical field of view being 2 × 2 mm, was obtained by scanning the transducer. The development of parallel fiber in cerebella cultures was clearly observed as the contrast in acoustic impedance, without staining the specimen. The technique is believed to be a powerful tool for biological tissue characterization, as no staining nor slicing is required.  相似文献   

17.
In this paper, the effects of piston scuffing fault on engine performance and vibrations are investigated. A procedure based on vibration analysis is also presented to identify piston scuffing fault. To this end, an internal combustion (IC) engine ran under a specific test procedure. The engine parameters and vibration signals were measured during the experiments. To produce piston scuffing fault, three-body abrasive wear mechanism was employed. The experimental results showed that piston scuffing fault caused the engine performance to reduce significantly. The vibration signals were analyzed in time-domain, frequency-domain and time–frequency domain. Continuous wavelet transform (CWT) was used to obtain time–frequency representations. “dmey” wavelet was selected as the optimum wavelet type for this research among different wavelet types using the three criteria of energy, Shannon entropy and energy to Shannon entropy ratio. The results of CWT analysis by “dmey” wavelet showed that piston scuffing fault excited the frequency band of 2.4–4.7 kHz in which the frequency of 3.7 kHz was affected more. Finally, seven different features were extracted from the engine vibration signals related to the frequency band of 2.4–4.7 kHz. The results indicated that maximum, mean, RMS, skewness, kurtosis and impulse factor of the engine vibration related to the found frequency band increased significantly due to piston scuffing fault. The obtained results showed that the proposed method identified piston scuffing fault and discovered the vibration characteristics of this fault like frequency band. The results also demonstrated the possibility of using engine vibrations in piston scuffing fault identification.  相似文献   

18.
Ultrasonics is an important diagnostic tool for bone diseases, as it allows for non-invasive assessment of bone tissue quality through mass density–elasticity relationships. The latter are, however, quite complex for fluid-filled porous media, which motivates us to develop a rigorous multiscale poromicrodynamics approach valid across the great variety of different bone tissues. Multiscale momentum and mass balance, as well as kinematics of a hierarchical double porous medium, together with Darcy’s law for fluid flow and micro–poro-elasticity for the solid phase of bone, give access to the so-called dispersion relation, linking the complex wave numbers to corresponding wave frequencies. Experimentally validated results show that 2.25 MHz acoustical signals transmit healthy cortical bone (exhibiting a low vascular porosity) only in the form of fast waves, agreeing very well with experimental data, while both fast and slow waves transmit highly osteoporotic as well as trabecular bone (exhibiting a large vascular porosity). While velocities and wavelengths of both fast and slow waves, as well as attenuation lengths of slow waves, are always monotonously increasing with the permeability of the bone sample, the attenuation length of fast waves shows a minimum when considered as function of the permeability.  相似文献   

19.
We present an ab initio study of methanol interaction with the Si(1 1 1)7 × 7 surface using a Si(1 1 1)4 × 2 model. The study of the methanol dissociation on Si(1 1 1)4 × 2 shows that pair dissociation on adatom-restatom dangling bonds is largely favoured, in agreement with the experimental observations. The “center” type adatom is slightly more reactive than the “corner” type one, although the difference is weak. Similar behaviour is observed in both adatom types. Our results for a direct CH3OH dissociation favouring a basic cleavage (adsorption of OH and CH3 fragments) rather than an acidic one (adsorption of H and OCH3 fragments), we are finally led to take a kinetic effect into consideration to reconcile theory with experiment. We show that the presence of molecular precursor states is possible. Different orientations with respect to the silicon dangling bonds of these molecular precursors are investigated. However, the corresponding energies are very close and, considering their relative energies, it is finally difficult to discriminate between acidic and basic cleavages.  相似文献   

20.
Aging mice with a rare osteopetrotic disorder in which the entire space of femoral bones are filled with trabecular bones are used as our research platform. A complete study is conducted with a micro computed tomography (CT) system to characterize the bone abnormality. Technical assessment of femoral bones includes geometric structure, biomechanical strength, bone mineral density (BMD), and bone mineral content (BMC). Normal aging mice of similar ages are included for comparisons. In our imaging work, we model the trabecular bone as a cylindrical rod and new quantitative which are not previously discussed are developed for advanced analysis, including trabecular segment length, trabecular segment radius, connecting node number, and distribution of trabecular segment radius. We then identified a geometric characteristic in which there are local maximums (0.0049, 0.0119, and 0.0147 mm) in the structure of trabecular segment radius. Our calculations show 343% higher in percent trabecular bone volume at distal-metaphysis; 38% higher in cortical thickness at mid-diaphysis; 11% higher in cortical cross-sectional moment of inertia at mid-diaphysis; 42% higher in cortical thickness at femur neck; 26% higher in cortical cross-sectional moment of inertia at femur neck; 31% and 395% higher in trabecular BMD and BMC at distal-metaphysis; 17% and 27% higher in cortical BMD and BMC at distal-metaphysis; 9% and 53% higher in cortical BMD and BMC at mid-diaphysis; 25% and 64% higher in cortical BMD and BMC at femur neck. Our new quantitative parameters and findings may be extended to evaluate the treatment response for other similar bone disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号