首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
LiNbO 3 has been found attractive for lateral field excitation (LFE) applications due to its high piezoelectric coupling. In this paper, bulk acoustic wave propagation properties for LiNbO 3 single crystal excited by a lateral electric field have been investigated using the extended Christoffel-Bechmann method. It is found that the LFE piezoelectric coupling factor for c mode reaches its maximum value of 95.46% when ψ = 0 for both (yxl)-58 and (yxwl)±60 /58 LiNbO 3 . The acoustic wave phase velocity of c mode TSM (thickness shear mode) changes from 3456 m/s to 3983 m/s as a function of ψ. Here ψ represents the angle between the lateral electric field and the crystallographic X-axis in the substrate major surface. A 5 MHz LFE device of (yxl)-58 LiNbO 3 with ψ = 0 was designed and tested in air. A major resonance peak was observed with the motional resistance as low as 17 and the Q-factor value up to 10353. The test result is well in agreement with the theoretical analysis, and suggests that the LFE LiNbO 3 device can be a good platform for high performance resonator or sensor applications.  相似文献   

2.
马廷锋  张超  冯冠平  江小宁 《中国物理 B》2010,19(8):87701-087701
In this work, bulk acoustic wave propagation properties of langasite single crystal excited by lateral electric field have been investigated. Three important crystal cuts have been identified for different operational modes of lateral field excitation (LFE) on langasite substrate, namely the (yxl)65o (pure-LFE mode), (yxl)45o (quasi-LFE mode), and (yxl)0o (pseudo-LFE mode). Devices on langasite substrate with the above cuts were fabricated and tested, and the experimental results agree well with the theoretical analysis. It is found that a pure thickness shear mode exists in the (yxl)65o langasite LFE device with the bare side facing liquid, and no spurious mode is found due to its moderately large piezoelectric coupling factor. In addition, (yxl)0o langasite LFE device is also found suitable for liquid phase sensing applications.  相似文献   

3.
Peverini  O.A.  Orta  R.  Tascone  R. 《Optical and Quantum Electronics》2000,32(6-8):855-867
In this paper we present an accurate and efficient numerical method for a rigorous full-wave analysis of interdigital transducers (IDT) for the excitation of surface acoustic waves on the piezoelectric substrate of acousto-optical devices. The problem is formulated in terms of an integral equation that is solved by the method of moments. The transducer input admittance and the power coupling factors to both surface and bulk waves are computed. Numerical results for some configurations of X-Y LiNbO3 IDT for acousto-optic applications are in very good agreement with measured data. It is pointed out that bulk wave excitation may be a serious limitation in the design of efficient, wide band transducers for acousto-optical devices.  相似文献   

4.
The effects of surface acoustic wave (SAW) and resonance oscillation (RO) of bulk acoustic waves on the catalysis of metals were studied in an attempt to design a catalyst surface with artificially controllable functions for chemical reactions. In ethanol decomposition on a thin Cu film catalyst deposited on the propagation path of a shear horizontal leaky SAW, the SAW-on increased the activity for ethylene production remarkably but a little for acetaldehyde production. A poled ferroelectric z-cut LiNbO3 with a thickness extensional mode RO (TERO) and a x-cut LiNbO3 with a thickness shear mode RO (TSRO) were employed as a substrate, on which a thin Ag film catalyst was deposited. For ethanol decomposition, TERO increased ethylene production activity and the selectivity for ethylene production from 79 to 96%, whereas TSRO caused little activity enhancement for both ethylene and acetaldehyde production. The combination with the results of laser Doppler measurements showed that the activity enhancement and selectivity changes with SAW and RO of the acoustic waves are associated with dynamic large lattice displacement vertical to the surface.  相似文献   

5.
Interaction between a weakly divergent optical beam and an acoustic wave generated in the range 1.0–2.5 GHz by an inphase multielement electroacoustic piezoelectric transducer is analyzed. A piezoelectric (Y + 36°)-cut LiNbO3 plate is fixed on the surface of an X-cut LiNbO3 acoustic duct with the help of metallic sublayers (Cr, Cu, In, Cu, or Cr). The inphase structure of the transducer is formed by the upper electrodes inter-connected by short conductors. The signal is applied through a coaxial Chebyshev transformer. The efficiencies of electroacoustic conversion and acoustooptic interaction are calculated as functions of frequency. The experimental setup, method, and results are described.  相似文献   

6.
The acousto-optic interaction with leaky surface acoustic wave radiation into the bulk of YX-cut LiTaO3 crystals has been investigated. The light incidence and diffraction angles corresponding to the strongest acousto-optic interaction were calculated and measured as functions of the acoustic wave frequency. The dependencies of the diffracted light intensity on the amplitude of radio-frequency voltage applied to the interdigital transducer (IDT) were studied. Our acousto-optic measurements revealed generation, by the IDTs, of slow shear bulk acoustic waves propagating at different angles depending on their frequency. A secondary acousto-optic interaction from the bulk waves radiated by the receiving IDT has been studied.  相似文献   

7.
Surface and quasi-longitudinal acoustic wave properties have been investigated in potassium titanyl arsenate (KTiOAsO4, KTA) single crystals for the first time. Surface acoustic wave (SAW) velocity, electromechanical coupling coefficient and power flow angle characteristics have been obtained in rotated Y-cut of KTA crystals. High SAW electromechanical coupling coefficient (0.4%) is found in Z-cut of KTA crystals. For high-frequency devices it is promising the resonators on quasi-longitudinal acoustic wave in X-cut of KTA crystals with sharp response in interdigital transducer conductance at resonance frequency.  相似文献   

8.
根据准相位匹配倍频原理,讨论了实现宽带二次谐波转换需要满足的条件.以周期性极化铌酸锂晶体和掺杂氧化镁(7mol%)周期性极化铌酸锂(7mol%MgO-PPLN)晶体为例,分别比较了0型(e+e→e)和Ⅰ型(o+o→e)两种准相位匹配情况下宽带高效二次谐波转换的特性.研究表明,对于7mol%MgO-PPLN晶体,同时满足准相位匹配条件和群速度匹配条件的中心波长和带宽向短波方向移动,且0型(e+e→e)准相位匹配情况下可以获得更大的带宽.  相似文献   

9.
We present a Judd-Ofelt spectroscopic analysis on the Mg/Er-codoped congruent lithium niobate (LiNbO3) crystals. The Judd-Ofelt model is applied to the room temperature unpolarized absorption intensities of Er3+ ions on eleven transition bands to determine their intensity parameters: Ω2=2.36×10−20 cm2, Ω4=0.76×10−20 cm2, Ω6=0.30×10−20 cm2 in Er:LiNbO3 crystal heavily codoped with MgO. The radiative lifetime of 2H9/2 becomes longer when MgO is added into Er:LiNbO3 crystal. The experimental lifetimes are obtained using microsecond time-resolved spectra at 400 nm femtosecond pulse excitation to predict radiative quantum efficiency. Combining higher radiative quantum efficiency with longer radiative lifetime, we conclude that Mg/Er-codoped LiNbO3 crystals are more suitable than Er: LiNbO3 ones in laser materials.  相似文献   

10.
Theoretical fundamentals of modern methods of X-ray diffractometry of surface acoustic waves (SAW) are considered briefly. X-ray diffraction on SAW-modulated crystals under total external reflection conditions and the Bragg conditions for the YZ-cut of the LiNbO3 crystal is considered. Agreement of theoretical and experimental results makes it possible to use them for SAW diagnostics. Possibilities and limitations of listed methods for determining the SAW field parameters are discussed.  相似文献   

11.
The near-stoichiometric LiNbO3 crystal co-doped with In2O3, Fe2O3, and CuO has been grown from a Li-rich melt (Li/Nb = 1.38, atomic ratio) by the Czochralski method in air atmosphere for the first time. The OH absorption spectra were characterized to investigate the structure defects of the crystals. The appearance of the 3506 cm−1 absorption peak manifests that the composition of the grown crystal is close to the stoichiometric ratio. The photorefractive properties were also measured by the two-wave coupling experiments. The results show that the near-stoichiometric In:Fe:Cu:LiNbO3 crystal has a larger refractive index change, higher recording sensitivity and larger two-wave coupling gain coefficient than those obtained in the congruent In:Fe:Cu:LiNbO3 crystal under the same experimental conditions. The material of near-stoichiometric In:Fe:Cu:LiNbO3 crystal is a promising candidate for blue photorefractive holographic recording.  相似文献   

12.
The formation of optical planar waveguides in LiNbO3 and stoichiometric LiNbO3 crystals by proton exchange was reported. The prism-coupling method was used to characterize the dark-line spectroscopy at the wavelength of 633 and 1539 nm, respectively. The mode optical near-field outputs from proton-exchanged LiNbO3 and SLN waveguides at 633 nm were presented. The mode field from stoichiometric LiNbO3 (SLN) waveguide is lighter and more uniform than that from LiNbO3 waveguide, which means the quality of the waveguide in SLN crystal is better than that of the LiNbO3 waveguide. For proton-exchanged LiNbO3 waveguides, the evolution of the refractive index profile with annealing was presented. The disorder profiles of Nb atoms in proton-exchanged LiNbO3 waveguides were obtained by Rutherford backscattering/channeling technique. It is shown that the longer the exchange time, the larger the displacement of Nb atoms. Supported by the National Natural Science Foundation of China (Grant No. 10475052) and the Scientific Research Start-up Financing of Qufu Normal University  相似文献   

13.
A c-axis orientated aluminium nitride (AlN) film on a 128° Y-X lithium niobate (LiNbO3) surface acoustic wave (SAW) device which exhibit a large electromechanical coupling coefficient (k2) and a high SAW velocity property, is needed for future communication applications. In this study, a c-axis orientated (B, Al)N film (with 2.6 at.% boron) was deposited on a 128° Y-X LiNbO3 substrate by a co-sputtering system to further boost SAW device properties. The XRD and TEM results show that the (B, Al)N films show highly aligned columns with the c-axis perpendicular to the substrate. The hardness and Young's modulus of (B, Al)N film on 128° Y-X LiNbO3 substrates are at least 17% and 7% larger than AlN films, respectively. From the SAW device measurement, the operation frequency characteristic of (B, Al)N film on 128° Y-X LiNbO3 is higher than pure AlN on it. The SAW velocity also increases as (B, Al)N film thickness increases (at fixed IDT wavelength). Furthermore, the k2 of (B, Al)N on the IDT/128° Y-X LiNbO3 SAW device shows a higher value than AlN on it.  相似文献   

14.
Doping MgO, MnO and Fe2O3 in LiNbO3 crystals, tri-doped Mg:Mn:Fe:LiNbO3 single crystals were prepared by the conventional Czochralski method. The UV-vis absorption spectra were measured and the shift mechanism of absorption edge was also investigated in this paper. In Mg:Mn:Fe:LiNbO3 crystal, Mn and Fe locate at the deep level and the shallow level, respectively. The two-photon holographic storage is realized in Mg:Mn:Fe:LiNbO3 crystals by using He-Ne laser as the light source and ultraviolet as the gating light. The results indicated that the recording time can be significantly reduced for introducing Mg2+ in the Mg:Mn:Fe:LiNbO3 crystal.  相似文献   

15.
The efficiency of acoustooptic (AO) interaction in YZ-cut proton exchanged (PE) LiNbO3 waveguides is theoretically analysed by determining the overlap between the optical and acoustic field distributions. The present analysis takes into account the perturbed SAW field distribution due to the presence of the PE layer on the LiNbO3 substrate determined by the rigorous layered medium approach. The overlap is found to be significant upto very high acoustic frequencies of the order of 5 GHz, whereas in the earlier analysis by vonHelmolt and Schaffer [6] for diffused waveguides, it was shown that the overlap integral rolls down to nearly zero at this high frequency range.  相似文献   

16.
Photorefractive properties of Hf:Fe:LiNbO3 crystals with various [Li]/[Nb] ratios have been investigated at 488 nm wavelength based on the two-wave coupling experiment. High diffraction efficiency and large recording sensitivity are observed and explained. The decrease in Li vacancies is suggested to be the main contributor to the increase in the photoconductivity and subsequently to the induction of the improvement of recording sensitivity. The saturation diffraction efficiency is measured up to 80.2%, and simultaneously the recording sensitivity of 0.91 cm/J is achieved to in the Hf:Fe:LiNbO3 crystal grown from the melt with the [Li]/[Nb] ratio of 1.20, which is significantly enhanced as compared with those of the Hf:Fe:LiNbO3 crystal with the [Li]/[Nb] ratio of 0.94 in melt under the same experimental conditions. Experimental results definitely show that increasing the [Li]/[Nb] ratio in crystal is an effective method for Hf:Fe:LiNbO3 crystal to improve its photorefractive properties.  相似文献   

17.
Xihe Zhen  Qiang Li 《Optik》2005,116(4):149-152
The new non-volatile holographic storage materials, Zn:Mn:Fe:LiNbO3 crystals, were prepared by Czochralski technique. Their microstructure was measured and analyzed by infrared (IR) transmission spectra. The optical damage resistance of Zn:Mn:Fe:LiNbO3 crystals was characterized by the transmitted beam pattern distortion method. It increases remarkably when the concentration of ZnO is over a threshold concentration. Its value in Zn(7.0 mol%):Mn:Fe:LiNbO3 crystal is about three orders of magnitude higher that in Mn:Fe:LiNbO3 crystal. The photoinduced birefringence change was measured by the Sénarmont's method. It decreased with ZnO concentration increasing. The dependence of the defects on the optical damage resistance was discussed.  相似文献   

18.
The propagation of surface acoustic waves at microwave frequencies (1010 Hz) was studied on proton exchanged LiNbO3 crystals by means of Brillouin scattering. The proton exchange causes a large velocity reduction for surface acoustic waves propagating in the x–y plane of ay-cut crystal as well as for longitudinal bulk acoustic waves travelling in the proton exchanged sub-surface region. The velocity reduction amounts to about 20% for both types of waves. The corresponding elastic constants are reduced even by about 40% since the density remains almost constant. This softening seems to involve both the shear and compressional elastic constants, but in an anisotropic way.Thus by proton exchange it is possible to build acoustic waveguides adjacent to the surface, similar to the construction of optical waveguides. By a lateral control of the proton exchange rate optical elements for ultrasonic waves, for example, acoustic lenses can be produced without deformation of the flat surface.The absorption of surface acoustic waves on proton exchanged surfaces is stronger than on pure LiNbO3 indicating a novel absorption mechanism becoming active in the proton exchanged material.  相似文献   

19.
A technique for the acoustooptic multiplication of the frequency shift of an optical beam is proposed. The technique is based on the cascade diffraction of the beam by a single acoustic wave with the use of Bragg polarization splitting in a uniaxial crystal. The fundamental possibility of the practical realization of the technique is confirmed experimentally by using anisotropic acoustooptic diffraction in LiNbO3.  相似文献   

20.
The scanning of a one-dimensional light intensity distribution was accomplished by employing the acousto-optic interaction of surface waves on LiNbO3. The acoustic signal was 200 nano-seconds long with a center frequency of 100 MHz. To produce a large interaction length, the light propagates through the crystal parallel to the surface on which the acoustic surface wave is launched. The detected diffraction signal yields a temporal representation of the spatial intensity distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号