首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cutting force is one of the most important output variables in rotary ultrasonic machining (RUM) of carbon fiber reinforced plastic (CFRP) composites. Many experimental investigations on cutting force in RUM of CFRP have been reported. However, in the literature, there are no cutting force models for RUM of CFRP. This paper develops a mechanistic predictive model for cutting force in RUM of CFRP. The material removal mechanism of CFRP in RUM has been analyzed first. The model is based on the assumption that brittle fracture is the dominant mode of material removal. CFRP micromechanical analysis has been conducted to represent CFRP as an equivalent homogeneous material to obtain the mechanical properties of CFRP from its components. Based on this model, relationships between input variables (including ultrasonic vibration amplitude, tool rotation speed, feedrate, abrasive size, and abrasive concentration) and cutting force can be predicted. The relationships between input variables and important intermediate variables (indentation depth, effective contact time, and maximum impact force of single abrasive grain) have been investigated to explain predicted trends of cutting force. Experiments are conducted to verify the model, and experimental results agree well with predicted trends from this model.  相似文献   

2.
Many brittle materials, such as single-crystal materials, amorphous materials, and ceramics, are widely used in many industries such as the energy industry, aerospace industry, and biomedical industry. In recent years, there is an increasing demand for high-precision micro-machining of these brittle materials to produce precision functional parts. Traditional ultra-precision micro-machining can lead to workpiece cracking, low machined surface quality, and reduced tool life. To reduce and further solve these problems, a new micro-machining process is needed. As one of the nontraditional machining processes, rotary ultrasonic machining is an effective method to reduce the issues generated by traditional machining processes of brittle materials. Therefore, rotary ultrasonic micro-machining (RUμM) is investigated to conduct the surface micro-machining of brittle materials. Due to the small diameter cutting tool (<500 μm) and high accuracy requirements, the impact of input parameters in the rotary ultrasonic surface micro-machining (RUSμM) process on tool deformation and cutting quality is extremely different from that in rotary ultrasonic surface machining (RUSM) with relatively large diameter cutting tool (∼10 mm). Up till now, there is still no investigation on the effects of ultrasonic vibration (UV) and input variables (such as tool rotation speed and depth of cut) on cutting force and machined surface quality in RUSμM of brittle materials. To fill this knowledge gap, rotary ultrasonic surface micro-machining of the silicon wafer (one of the most versatile brittle materials) was conducted in this study. The effects of ultrasonic vibration, tool rotation speed, and depth of cut on tool trajectory, material removal rate (MRR), cutting force, cutting surface quality, and residual stress were investigated. Results show that the ultrasonic vibration could reduce the cutting force, improve the cutting surface quality, and suppress the residual compressive stress, especially under conditions with high tool rotation speed.  相似文献   

3.
Carbon fiber reinforced plastic (CFRP) composites are very difficult to machine. A large number of holes need to be drilled in CFRP for many applications. Therefore, it is important to develop cost-effective drilling processes. CFRP has been drilled by rotary ultrasonic machining (RUM) successfully. The literature has reports about the effects of input variables on output variables (including cutting force, torque, surface roughness, tool wear, and workpiece delamination) in RUM of CFRP. However, there are no reports on power consumption in RUM of CFRP. This paper reports the first study on power consumption in RUM of CFRP. It reports an experimental investigation on effects of input variables (ultrasonic power, tool rotation speed, feedrate, and type of CFRP) on power consumption of each component (including ultrasonic power supply, spindle motor, coolant pump, and air compressor) and the entire RUM system.  相似文献   

4.
The titanium alloys cause high machining heat generation and consequent rapid wear of cutting tool edges during machining. The ultrasonic assisted turning (UAT) has been found to be very effective in machining of various materials; especially in the machining of “difficult-to-cut” material like Ti6Al4V. The present work is a comprehensive study involving 2D FE transient simulation of UAT in DEFORM framework and their experimental characterization. The simulation shows that UAT reduces the stress level on cutting tool during machining as compared to that of in continuous turning (CT) barring the penetration stage, wherein both tools are subjected to identical stress levels. There is a 40–45% reduction in cutting forces and about 48% reduction in cutting temperature in UAT over that of in CT. However, the reduction magnitude reduces with an increase in the cutting speed. The experimental analysis of UAT process shows that the surface roughness in UAT is lower than in CT, and the UATed surfaces have matte finish as against the glossy finish on the CTed surfaces. Microstructural observations of the chips and machined surfaces in both processes reveal that the intensity of thermal softening and shear band formation is reduced in UAT over that of in CT.  相似文献   

5.
Dual-frequency ultrasonic assisted photocatalysis (DUAP) was proposed to enhance the degradation efficiency of methylene blue (MB) solution. The influence of operational parameters, i.e., irradiation time, ultrasonic arrangement, TiO2 concentration and power density, was studied. The results implied that the rapid degradation of MB solution was achieved in 18 min under DUAP with the dual frequencies of 20/40 kHz. Kinetic investigation of MB degradation for the DUAP process was conducted on the basis of first-order kinetic equation and the synergistic effect was assessed by examination of the apparent rate constant. The effect of ultrasonic arrangement was analyzed by comparison of the pressure amplitude of ultrasonic superposition field. The evolvement of intermediate products and the role of active species during DUAP were distinguished by UV-Vis spectra and the free radical scavenging experiment.  相似文献   

6.
Nath C  Lim GC  Zheng HY 《Ultrasonics》2012,52(5):605-613
Micro-chipping via micro-cracks, due to rapid mechanical indentations by abrasive grits, is the fundamental mechanism of material removal during ultrasonic machining (USM) of hard-brittle materials like ceramics and glass. This study aims mainly to investigate the adverse effects of this inherent removal phenomena on the hole integrity such as entrance chipping, wall roughness and subsurface damage. It also presents the material removal mechanism happens in the gap between the tool periphery and the hole wall (called ‘lateral gap’). To do so, experiments were conducted for drilling holes on three advanced structural ceramics, namely, silicon carbide, zirconia, and alumina. Earlier published basic studies on the initiation of different crack modes and their growth characteristics are employed to explain the experimental findings in this USM study. It is realized that the radial and the lateral cracks formed due to adjacent abrasives, which are under the tool face, extends towards radial direction of the hole resulting in entrance chipping. Additionally, the angle penetration and the rolling actions of the abrasives, which are at the periphery of the tool, contribute to the entrance chipping. Later on, in the ‘lateral gap’, the sliding (or abrasion) and the rolling mechanisms by the larger abrasives take part to material removal. However, they unfavorably produce micro-cracks in the radial direction resulting in surface and subsurface damages, which are ultimately responsible for higher wall-surface roughness. Since the size of micro-cracks in brittle materials is grit size dependent according to the earlier studied physics, it is realized that such nature of the hole integrity during USM can only be minimized by employing smaller grit size, but cannot fully be eliminated.  相似文献   

7.
The effect of titanium hydride on the formation of nanoporous TiO2 on Ti during anodization has been investigated by X-ray photoelectron spectroscopy, grazing incident X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Titanium hydride (TiH2) was formed after cathodization, profoundly impacting the formation of nanoporous TiO2 on Ti by anodization. Oxide layer and nanocrystal structure were observed after anodization with cathodic pretreatments. A multi-nanoporous TiO2 layer was formed on the titanium. The titanium hydride is a nanostructure. The nanostructure is directly changed to nanoporous TiO2 by a dissolution reaction during anodization. The nanoporous layer is difficult to form without cathodization. The nanostructural TiH2 is important in forming a nanoporous TiO2 layer. Anodization treatment with cathodic pretreatment not only yields a titanium surface with a multi-nanostructure, but also transforms the titanium surface into a nanostructured titanium oxide surface.  相似文献   

8.
《Composite Interfaces》2013,20(4):233-248
An experimental study was conducted to arrest a crack in 1.0-mm-thick 6061-T6 aluminum single-edge-notch tension specimen. The specimen was repaired by symmetrical bonding of carbon fiber-reinforced polymer patches made of several plies. Although J-integral was reduced drastically, the specimen failed at one of the leading edges through separation at the interface. The separation was suppressed by tapering all the four leading edges of the patches. The specimens did not fail in the patched area when loaded up to the far field stress of 272 MPa, which was higher than the yield stress, 265 MPa of the aluminum plate.  相似文献   

9.
对在使用悬链式超声功率计测量时由于声源指向性所产生的误差进行了理论探讨,并对几个实例进行了数值计算,给出了相应的修正值。  相似文献   

10.
The influence of the applied passive potential on the electronic property of the passive film formed on Ti at different potentials in 0.1 M HCl solution during ultrasonic cavitation, was investigated by electrochemical impedance spectra (EIS) and Mott–Schottky plot. The influence of the applied passive potential on the structure and composition of the passive film was studied by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The results showed that the applied passive potential can obviously affect the electronic property of the passive film formed on Ti during ultrasonic cavitation. The resistance of the passive film increased, and the donor density of the passive film decreased with increasing the potential. The flat band potential moved to positive direction and the band gap of the passive film moved to negative direction with increasing potential. AES and XPS results indicated that the thickness of the passive film increased evidently with applying passive potential. The passive film was mainly composed of the mixture of TiO and TiO2. While the TiO2 content increased with increasing the applied passive potential, and the crystallization of the passive film increased with the increased potential.  相似文献   

11.
为了研究声光效应中声致折射率变化情况,以超声光栅实验为基础,用CCD结合光强分析软件,分析了衍射光的强度分布;通过数值计算衍射光相对强度,比较得到了在超声场频率为10.27 MHz时,介质中的声光相位延迟Δ=1.2855 rad,声致折射率变化量Δn=3.014×10-6;进而讨论了电声换能器的机电耦合效率与超声频率的关系,给出当超声频率为10.33 MHz时,耦合效率最高,介质中折射率变化量最大;结果表明,在超声光栅实验中,引入这些测量内容,不仅能丰富实验内容,更能加深学生理解声光效应,扩展学生的知识面.  相似文献   

12.
In this work, we report on the structural characterisation of Ni and Ni/Ti bilayer contacts on n-type 4H-SiC. The redistribution of carbon, after annealing, in the Ni/SiC and the Ni/Ti/SiC contacts is particularly studied by RBS at 3.2 MeV, XRD and AES techniques.  相似文献   

13.
脆性光学材料的超声磨削实验研究   总被引:7,自引:0,他引:7  
分别采用超声磨削和普通磨削加工方法加工了几种脆性光学材料,研究了几种主要工艺参数对工件加工表面粗糙度的影响。结果表明,超声频率和振幅、金刚石磨料粒度、切深、工具的横向进给速度和旋转速度等工艺参数对表面粗糙度的影响较大。通过比较发现,超声磨削方法比普通磨削方法具有更好的加工表面粗糙度,更高的材料去除率,以及更低的工具磨损量。  相似文献   

14.
Milk fermentation with Lactobacillus delbrueckii under ultrasonic irradiation was carried out in a 450 cm3 bioreactor with a polyethylene film bottom. Ultrasonic irradiation increased the hydrolysis of lactose in milk but decreased the cell viability. However, the viable cell count increased again when the ultrasound was stopped, because ultrasound did not destroy the ability for cell propagation. When the sonication power was 17.2 kW m-2 and the sonication period was 3 h, 4.9 × 108 cfu cm-3 of the viable cell count and 55% lactose hydrolysis were attained. In contrast, the viable cell count was 2 × 109 cfu cm-3 and 35.6% lactose was hydrolysed in control fermentation.  相似文献   

15.
The Ti-doped Ta2O5 thin films (<10 nm) obtained by rf sputtering are studied with respect to their composition, dielectric and electrical properties. The incorporation of Ti is performed by two methods - a surface doping, where a thin Ti layer is deposited on the top of Ta2O5 and a bulk doping where the Ti layer is sandwiched between two layers of Ta2O5. The effect of the process parameters (the method and level of doping) on the elemental distribution in-depth of the films is investigated by the time of flight secondary ion mass spectroscopy (ToF-SIMS). The Ti and Ta2O5 are intermixed throughout the whole thickness but the layers are very inhomogeneous. Two sub-layers exist in all the samples — a near interfacial region which is a mixture of Ta-, Ti-, Si-oxides as well as TaSiO, and an upper Ti-doped Ta2O5 sub-layer. For both methods of doping, Ti tends to pile-up at the Si interface. The electrical characterisation is performed on capacitors with Al- and Ru-gate electrodes. The two types of MIS structures exhibit distinctly different electrical behavior: the Ru gate provides higher dielectric permittivity while the stacks with Al electrode are better in terms of leakage currents. The specific metal-dielectric reactions and metal-induced electrically active defects for each metal electrode/high-k dielectric stack define its particular electrical behavior. It is demonstrated that the Ti doping of Ta2O5 is a way of remarkable improvement of leakage characteristics (the current reduction with more than four orders of magnitude as compared with undoped Ta2O5) of Ru-gated capacitors which originates from Ti induced suppression of the oxygen vacancy related defects.  相似文献   

16.
In this study, we report on the structural characterization of Ni layer and Ni/Ti bilayer contacts on n-type 4H-SiC. The resulting Ni-silicides and the redistribution of carbon, after annealing at 950 °C, in the Ni/SiC and the Ni/Ti/SiC contacts are particularly studied by Rutherford Backscattering Spectrometry (RBS) at Eα = 3.2 MeV, nuclear reaction analysis (NRA) at Ed = 1 MeV, scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) techniques.  相似文献   

17.
The article presents novel design of non-contact rotary ultrasonic motor consisting of ring-shaped stator vibrating in in-plane flexural mode and rotor provided with blades. In contrast to other motors with similar design proposed motor relies on the use of standing ultrasonic waves. This simplifies design and electronic control of motor and becomes possible due to introduction of artificial asymmetry, for example by tilting one or several blades of the rotor relative to the surface normal. Operating principle of the proposed motor is based on acoustic radiation torque exerted on rotor by ultrasonic waves propagating in air or fluid gap between rotor and stator. This torque is calculated using finite element method by means of COMSOL Multiphysics software. Dynamics of rotor is studied using MathCad software and general theory of nonlinear conservative oscillators. Role of asymmetry is explained on the basis of comparative analysis of potential functions and phase trajectories for symmetric and asymmetric cases. It is shown that direction of rotation is determined by structural parameters of motor, particularly tilting direction (clockwise or counter-clockwise) of the blades. Conceptual design of motor with bidirectional rotation is described. Direction and velocity of rotation in the proposed conceptual design can be potentially controlled by changing excitation frequency of stator.  相似文献   

18.
超声振动辅助方法已在各种硬脆性材料的加工工艺中得以应用,其优异的加工能力和效果已得到广泛证明。本研究中通过采集有无超声振动条件下锯切光学玻璃的平均锯切力以及单颗金刚石磨粒划擦实验下的力信号,对不同工艺条件下的平均锯切力、单颗磨粒受力特征进行分析。同时通过扫描电镜观察对应力信号下工件与工具加工后表面形貌,进一步通过超声振动下材料去除机理解释超声振动对锯切力影响。结果表明:与传统锯切工艺相比,超声振动辅助使得单颗磨粒划擦过程中的受力降低引起平均锯切力的降低;超声振动改变普通锯切下材料的去除方式;同时可使工具保持良好的锯切状态,降低光学玻璃材料的锯切力比,改善其可加工性。  相似文献   

19.
In this work, a computational technique based on semiempirical SCF MO method MSINDO, has been used for investigation of the adsorption and photocleavage of para-chlorophenol (p-CP) molecule on the anatase TiO2 (0 0 1) and (1 0 0) surfaces. The surfaces have been modeled with two saturated clusters Ti21O58H32 and Ti36O90H36. The optimization of the perpendicular conformation of p-CP molecule relative to the anatase TiO2 (1 0 0) surface, has resulted in a linkage of the molecule to the surface titanium atom via phenolic oxygen atom. We studied the aromatic ring cleavage by singlet oxygen (1O2) and superoxide radical anion () and accordingly, relevant mechanisms are suggested. The results reveal that the ring opening path of p-CP molecule on TiO2 (1 0 0) surface, following the single electron transfer/ mechanism, is energetically more favourable than the 1O2/dioxetane mechanism.  相似文献   

20.
钛合金表面激光熔覆TiC_p/Ni基合金复合耐磨涂层   总被引:6,自引:2,他引:6  
采用激光熔覆技术在TC4合金表面制备TiC颗粒增强的Ni基合金复合材料涂层,测试了熔覆层的硬度和滑动摩擦磨损性能,分析了熔覆层的强化机制。结果表明,熔覆层中存在颗粒强化、固溶强化和细晶强化等多种强化作用,熔覆层的显微硬度达HV900~1100,耐磨性能比TC4合金显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号