首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An acoustic radiation force counterbalanced appliance was employed to map the cavitation distribution in water. The appliance was made up of a focused ultrasound transducer and an aluminum alloy reflector with the exactly same shape. They were centrosymmetry around the focus of the source transducer. Spatial–temporal dynamics of cavitation bubble clouds in the 1.2 MHz ultrasonic field within this appliance were observed in water. And they were mapped by sonochemiluminescence (SCL) recordings and high-speed photography. There were significant differences in spatial distribution and temporal evolution between normal group and counterbalanced group. The reflector could avoid bubble directional displacement induced by acoustic radiation force under certain electric power (⩽50 W). As a result, the SCL intensity in the pre-focal region was larger than that of normal group. In event of high electric power (⩾70 W), most of the bubbles were moving in acoustic streaming. When electric power decreased, bubbles kept stable and showed stripe structure in SCL images. Both stationary bubbles and moving bubbles have been captured, and exhibited analytical potential with respect to bubbles in therapeutic ultrasound.  相似文献   

3.
In this letter, the improvement in focus by the use of a pupil mask produced in an acoustic mesoscale cuboid particle filled with CO2 is reported. Thereby, the result shows that the pupil mask increases the sound intensity and also increases the resolution (or a reduction of the full width at half maximum, FWHM) in focus compared to the non-masked one. These results are important because they confirm the effect of abnormal amplitude apodization for a one-wavelength dimension acoustic lens and demonstrate that it is possible to improve sound focusing of a cuboid gas-filled lens with one wavelength dimension. This is the smallest size of an acoustic lens ever considered in this type of literature, with side dimensions of the cube equal to one wavelength and a diameter to focus ratio of 2.5, the sound amplification in focus is 5.4 dB at 4125 Hz, with the resolution near to the diffraction limit.  相似文献   

4.
This paper reports an exploratory study of the aeroacoustics of a merging flow at a duct junction with the same width in all branches and different merging angles. The focus is put on the acoustic generation due to the flow unsteadiness. The study is carried out by the direct aeroacoustic simulation (DAS) approach, which solves the unsteady compressible Navier–Stokes equations and the perfect gas equation of state simultaneously using the conservation element and solution element (CE/SE) method. The Mach number based on the maximum inlet velocity of side branch is 0.1 and the Reynolds number of the flow based on duct width and this velocity is 2.3×105. The numerical simulations are performed in two dimensions and the aeroacoustics at different merging angles (30°, 45°, 60° and 90°) are studied. Both the levels of unsteady interactions of merging flow structures and the efficiency of the acoustic generation are observed to increase with the merging angles, where the increase in acoustic efficiency can be up to three orders of magnitude. The major acoustic source is found to be the fluctuating wall pressure induced by the flow unsteadiness in the downstream branch. A scaling law between the wall fluctuating force and the acoustic efficiency is also derived.  相似文献   

5.
An intensified charge coupled device (ICCD) camera was used to observe the spatial distribution of sonoluminescence (SL) and sonochemiluminescence (SCL) generated by cavitation bubbles in a 1.2 MHz focused ultrasound (FU) field in order to investigate the mechanisms of acoustic cavitation under different sonication conditions for FU therapeutic applications.It was found that SL emissions were located in the post-focal region. When the intensity of SL and SCL increased as the power rose, the growth of SCL was much higher than that of SL. In the post-focal region, the SCL emissions moved along specific paths and formed branch-like streamers. At the beginning of the ultrasound irradiation, cavitation bubbles generated SCL in both the pre-focal and the post-focal region. When the electrical power or the sonication time increased, the SCL in the post-focal region increased and became higher than that in the pre-focal region. The intensity of SCL in the focal region is usually the weakest because of “oversaturation”.The spatial distribution of SCL near a tissue boundary differed from that obtained in free fields. It organized into special structures under different acoustic amplitudes. When the electrical power was relatively low, the SCL emission was conical shape which suggested a standing wave formation at the tissue-fluid boundary. When the electrical power exceeded a certain threshold, only a bright spot could be captured in the focus. The cavitation bubbles which centralized in the focus concentrated energy and hindered the formation of standing waves. With rising electrical power at high levels, besides a bright spot in the focus, there were some irregular light spots in pre-focal region, which indicated some cavitation bubbles or small bubble clusters achieved the threshold of SCL and induced the reaction with the luminol solution.  相似文献   

6.
在高强度聚焦超声经颅治疗时,既有纵波又有剪切波,为了保障该治疗方法的安全有效性,有必要分析剪切波对HIFU治疗温度场的影响。该文基于人体头颅CT数据和曲率半径为150 mm的256阵元的半球相控换能器建立三维高强度聚焦超声经颅声波传播模型,利用时域有限差分法结合Westervelt声波非线性传播方程、动量方程、质量守恒方程和Pennes生物热传导方程数值仿真其形成温度场,研究在相同输入功率、不同聚焦角度条件下对应阵元数进行激励时,剪切波对换能器形成温度场的影响。结果表明,随换能器聚焦角度减小,在几何焦点处形成的焦域面积逐渐增大,考虑剪切波形成的温度场达到65?C所需时间逐渐延长,焦点前移程度越大;在相同聚焦角度条件下,考虑剪切波的温度场达到65?C所需时间更短,旁瓣更少,在颅骨处的温度更高,对焦点前移几乎没有影响;随换能器聚焦角度减小,考虑剪切波的模型形成的焦域面积变化范围更大;幂指数函数形式对不同聚焦角度下焦域面积大小的拟合优度高,可预测不同聚焦角度换能器形成的焦域面积。  相似文献   

7.
The feasibility that temperature field measurements in vitro as an alternative way to characterize the high intensity focused ultrasound (HIFU) field used in therapeutic applications has been explored in a phantom study. Thermocouples (copper-constantan, diameter 0.125 mm) are embedded in a phantom filled with tissue mimicking material that simulates the thermal and acoustic properties of soft-tissue. The temperature rises as a function of ultrasound exposure time near the focus of a HIFU transducer (1.1 MHz, active radius a = 32 mm, geometric focal length = 62 mm) of various acoustic powers up to 30 W are measured and compared with predicted values using a simple nonlinear Gaussian model. The experimental results can be explained well by the model if no acoustic cavitation takes place. When the acoustic power become higher (>5 W) and the local temperature elevation >15 °C and the local temperature is >40 °C at the focal point, cavitation vapor bubbles appear. The presence of the cavitation bubbles may increase the temperature rise rate initially. The bubble aggregates may form along the beam axis under sonication and then eventually makes the temperature elevation reach a saturated value. When acoustic cavitation occurs, the bubble-assisted enhancement of the initial temperature rise (exposure time t < 2 s) can still be predicted by the theory.  相似文献   

8.
This paper presents a meta-material-based design method for bulk acoustic wave (BAW) resonators with enhanced characteristics compared to those obtained with the typical bulk material implementation. We demonstrate the novel use of empty inclusions (i.e., ‘holes’) in bulk materials for engineering their acoustic (mechanical) properties (e.g. Young’s modulus E, Poisson’s ratio ν and mass density ρ) to tune and achieve optimal acoustical performance/characteristics. Inclusions have been demonstrated before to produce phononic band gaps for wave trapping. We focus on the propagation characteristics of the meta-materials brought into being by these inclusions. We implement patterns of holes with different sizes and distributions, to effectively scatter acoustic waves in bar-type BAW resonators and to devise the desired resonator properties, e.g., the resonant frequency. While the available bulk material is homogeneous and isotropic, the bar consists of an equivalent non-homogeneous material that can for example be distributed by design in order to shrink the overall resonator size, enhance electromechanical transduction coefficients or reject spurious modes. Our paper compares two extraction methods for the equivalent material properties of a periodically hole-punched material: the steady-state mechanical simulation of a unit cell and its ‘phase delay’ counterpart. We discuss their validity and practical use for the design of bar resonators.  相似文献   

9.
微泡对高强度聚焦超声声压场影响的仿真研究*   总被引:2,自引:1,他引:1  
微泡对高强度聚焦超声(HIFU)治疗焦域具有增效作用,而HIFU治疗中不同声学条件下微泡对HIFU形成声压场的影响尚不清楚。本文基于气液混合声波传播方程、Keller气泡运动方程、时域有限差分(FDTD)法和龙格-库塔(RK)法数值仿真研究输入声压、激励频率、气泡初始空隙率和气泡初始半径对HIFU形成声压场的影响。研究结果表明,随着输入声压的增大,焦点处声压升高但焦点处最大声压与输入声压的比值减小,焦点位置几乎不变;随着激励频率和气泡初始半径的增大,焦点处声压升高且焦点位置向远离换能器方向移动;随着气泡初始空隙率的增大,焦点处声压降低且焦点位置向换能器方向移动。  相似文献   

10.
Blood vessel is one of the most important targets encountered during focused ultrasound (FU) therapy. The lasting high temperature caused by continuous FU can result in structural modification of small vessel. For the vessel with a diameter larger than 2 mm, convective cooling can significantly weaken the thermal effect of FU. Meanwhile, the continued presence of ultrasound will cause repetitive cavitation and acoustic microstreaming, making comprehension of continuous wave induced cavitation effect in large vessels necessary. The Sonoluminescence (SL) method, mechanical damage observation and high-speed camera were used in this study to investigate the combination effect of ultrasound contrast agents (UCAs) and continuous FU in large phantom vessels with a diameter of 10 mm without consideration of thermal effect. When the focus was positioned at the proximal wall, cylindrical hole along the acoustic axis opposite the ultrasound wave propagation direction was observed at the input power equal to or greater than 50 W. When the focus was located at the distal wall, only small tunnels can be found. The place where the cylindrical hole formed was corresponding to where bubbles gathered and emitted brilliant light near the wall. Without UCAs neither such bright SL nor cylindrical hole can be found. However, the UCAs concentration had little influence on the SL distribution and the length of cylindrical hole. The SL intensity near the proximal vessel wall and the length of the cylindrical hole both increased with the input power. It is suggested that these findings need to be considered in the large vessel therapy and UCAs usage.  相似文献   

11.
This study investigated whether the production of prosodic focus and phrasing contrasts was modified when interlocutors could only hear each other [auditory only (AO)], compared to when they could hear and see each other [face to face (FTF)]. The prosodic characteristics of utterances produced by six talkers were examined using both acoustic and perceptual measures (ratings of the degree of focus or clarity of the statement-question contrast). The acoustic measures showed a range of differences between narrow focus and between phrasing contrasts and some of these differences were greater in the AO setting than the FTF one. The listener's ratings of focus and phrasing showed a clear difference between the AO and FTF conditions, with perceptual attributes of both narrow focus and echoic question phrasing being rated as clearer in the AO condition. To explain these results it is proposed that talkers compensate for the lack of visual prosodic cues in the AO condition by taking extra care (relative to FTF conditions) to ensure the effective transmission of prosodic cues.  相似文献   

12.
周慧婷  吕朋  廖长义  王华  沈勇 《光学学报》2012,32(9):908001-81
提出了一种基于声光折射对聚焦超声焦点声压进行非侵入式检测的方法。当一束直径小于声波长的平行光束入射穿过聚焦超声的焦点时,通过研究焦点声压与光线偏转的具体关系,建立了光线最大偏转距离与焦点声压变化的关系模型,从而计算出焦点峰值声压。为了对理论模型进行验证,采用凹球面型聚焦换能器进行实验研究。通过与采用光纤水听器测量的结果进行对比,证明理论模型的可行性。结果表明实验得到的光斑图像与理论分析的结果一致,且用该方法测得的焦点峰值声压与光纤水听器测量的结果相比,相对误差小于15%,证明该方法具有可行性,能够定量检测焦点峰值声压。模型的提出也为将声光折射效应用于整个聚焦声场的定量检测提供了实验依据和理论依据。  相似文献   

13.
Diffraction effects, taking place during nonlinear transformations in inhomogeneous acoustic fields, are experimentally investigated. The case of a convergent spherical wave front propagating in a uniform nonlinear medium, detection of an acoustic field in a focus, and receiving of the detected signal in the region of the initial wave front aperture are considered. A spherical piezoceramic transducer is used in the experiments as a focusing device. Broad-angle “nonlinear scattering” signals have been recorded at the experimental facility where a pulsed mode of focused transducer operation in water is implemented. The dependence of the amplitude of the signal, detected in the focal area, and its shape on the scattering direction, as well as on the distance between the focus and the receiving point, are studied.  相似文献   

14.
Silicon–polymer composites fabricated by micromachining technology offer attractive properties for use as matching layers in high frequency ultrasound transducers. Understanding of the acoustic behavior of such composites is essential for using them as one of the layers in a multilayered transducer structure. This paper presents analytical and finite element models of the acoustic properties of silicon–polymer composites in 2-2 connectivity. Analytical calculations based on partial wave solutions are applied to identify the resonance modes and estimate effective acoustic material properties. Finite Element Method (FEM) simulations were used to investigate the interaction between the composite and the surrounding load medium, either a fluid or a solid, with emphasis on the acoustic impedance of the composite. Composites with lateral periods of 20, 40 and 80 μm were fabricated and used as acoustic matching layers for air-backed transducers operating at 15 MHz. These composites were characterized acoustically, and the results were compared with analytical calculations. The analytical model shows that at low to medium silicon volume fraction, the first lateral resonance in the silicon–polymer 2-2 composite is defined by the composite period, and this lateral resonant frequency is at least 1.2 times higher than that of a piezo-composite with the same polymer filler. FEM simulations showed that the effective acoustic impedance of the silicon–polymer composite varies with frequency, and that it also depends on the load material, especially whether this is a fluid or a solid. The estimated longitudinal sound velocities of the 20 and 40 μm period composites match the results from analytical calculations within 2.7% and 2.6%, respectively. The effective acoustic impedances of the 20 and 40 μm period composites were found to be 10% and 26% lower than the values from the analytical calculations. This difference is explained by the shear stiffness in the solid, which tends to even out the surface displacements of the composites.  相似文献   

15.
In this paper, we present a feasible microsystem in which the direction of localized ultrahigh frequency (∼1 GHz) bulk acoustic wave can be controlled in a silicon wafer. Deep etching technology on the silicon wafer makes it possible to achieve high aspect ratio etching patterns which can be used to control bulk acoustic wave to transmit in the directions parallel to the surface of the silicon wafer. Passive 45° mirror planes obtained by wet chemical etching were employed to reflect the bulk acoustic wave. Zinc oxide (ZnO) thin film transducers were deposited by radio frequency sputtering with a thickness of about 1 μm on the other side of the wafer, which act as emitter/receptor after aligned with the mirrors. Two opponent vertical mirrors were inserted between the 45° mirrors to guide the transmission of the acoustic waves. The propagation of the bulk acoustic wave was studied with simulations and the characterization of S21 scattering parameters, indicating that the mirrors were efficient to guide bulk acoustic waves in the silicon wafer.  相似文献   

16.
Uniformly-sized preparations with average microbubble (MB) diameters from 1 to 7 μm were produced reliably by sonicating decafluorobutane-saturated solutions of serum albumin and dextrose. Detailed protocols for producing and size-separating the MBs are presented, along with the effects that changing each production parameter (serum albumin concentration, sonication power, sonication time, etc.) had on MB size distribution and acoustic stability. These protocols can be used to produce MBs for experimental applications or serve as templates for developing new protocols that yield MBs with physical and acoustic properties better suited to specific applications. Size stability and ultrasonic performance quality control tests were developed to assure that successive MB preparations perform identically and to distinguish the physical and acoustic properties of identically sized MBs produced with different serum albumin-dextrose formulations and sonication parameters. MBs can be stored at 5 °C for protracted periods (2 weeks to one year depending on formulation).  相似文献   

17.
Boiling histotripsy is a High Intensity Focused Ultrasound (HIFU) technique which uses a number of short pulses with high acoustic pressures at the HIFU focus to induce mechanical tissue fractionation. In boiling histotripsy, two different types of acoustic cavitation contribute towards mechanical tissue destruction: a boiling vapour bubble and cavitation clouds. An understanding of the mechanisms underpinning these phenomena and their dynamics is therefore paramount to predicting and controlling the overall size of a lesion produced for a given boiling histotripsy exposure condition. A number of studies have shown the effects of shockwave heating in generating a boiling bubble at the HIFU focus and have studied its dynamics under boiling histotripsy insonation. However, not much is known about the subsequent production of cavitation clouds that form between the HIFU transducer and the boiling bubble. The main objective of the present study is to examine what causes this bubble cluster formation after the generation of a boiling vapour bubble. A numerical simulation of 2D nonlinear wave propagation with the presence of a bubble at the focus of a HIFU field was performed using the k-Wave MATLAB toolbox for time domain ultrasound simulations, which numerically solves the generalised Westervelt equation. The numerical results clearly demonstrate the appearance of the constructive interference of a backscattered shockwave by a bubble with incoming incident shockwaves. This interaction (i.e., the reflected and inverted peak positive phase from the bubble with the incoming incident rarefactional phase) can eventually induce a greater peak negative pressure field compared to that without the bubble at the HIFU focus. In addition, the backscattered peak negative pressure magnitude gradually increased from 17.4 MPa to 31.6 MPa when increasing the bubble size from 0.2 mm to 1.5 mm. The latter value is above the intrinsic cavitation threshold of –28 MPa in soft tissue. Our results suggest that the formation of a cavitation cloud in boiling histotripsy is a threshold effect which primarily depends (a) the size and location of a boiling bubble, and (b) the sum of the incident field and that scattered by a bubble.  相似文献   

18.
We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance.  相似文献   

19.
近场反卷积聚焦波束形成声图测量   总被引:4,自引:0,他引:4       下载免费PDF全文
为了提高声图测量中对多个声源的分辨能力和定位精度,给出了一种近场二维反卷积聚焦波束形成声图测量方法。推导了水下声图测量的广义卷积模型,根据声图测量中点传播函数移变但可预测的特点,通过预存点传播函数字典的方式,将波束形成过程中的卷积问题转化成叠加积分问题,并应用二维Richardson-Lucy迭代算法实现了二维移变模型情况下的近场二维反卷积求解,从而实现高分辨声图测量。通过仿真和海试对比了反卷积、常规声图测量和MVDR声图测量的性能,结果表明反卷积算法在500次迭代情况下聚焦峰尺度小于另外两种算法的1/2,旁瓣级下降超过6 dB.   相似文献   

20.
针对焊缝内相控阵声场聚焦问题,建立焊缝结构中多高斯声束法的相控阵声场计算模型,分别用直接聚焦和底面反射聚焦两种方式对焊缝内部的相控阵声场进行数值模拟,分析不同方式下的相控阵聚焦声场特性,讨论不同区域适用的聚焦方式,分析了界面倾斜角度对聚焦效果的影响。结果表明,在相同焊缝结构条件下直接聚焦的方式更适合对厚壁焊缝的中下部进行聚焦扫描,在焊缝上表面附近,当声束偏转角大于80°时,直接聚焦方式无法有效聚焦;反射聚焦的方式更适合对焊缝上表面附近区域进行聚焦扫描,随着焦点深度增加,反射聚焦的声束偏转角增大,当声束偏转角大于55°时,反射聚焦无法形成明显焦点;两种聚焦扫描方式可形成有效的互补。当设置的焦点固定时,直接聚焦的实际焦点随界面倾斜角度增大向预设点远处偏移,而反射聚焦的效果基本不受倾斜角的影响,实际焦点始终在预设焦点附近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号