首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen TY  Chu SY  Juang YD 《Ultrasonics》2003,41(2):141-143
The Sm-modified lead titanate ceramics with a composition of (Pb(0.88-x)Sr(x)Sm(0.08))(Ti(0.98)Mn(0.02))O(3); x = 0.05-0.25 were prepared by conventional mixed-oxide method. Surface acoustic wave (SAW) properties, including phase velocity, electromechanical coupling coefficient and temperature coefficient of frequency, were measured. The experiments successfully showed that Sr additive is helpful to obtain higher phase velocity and high electromechanical coupling coefficient. The SAW properties of our samples (V(p),k(2)) are better than some commercially-made PZT and PT samples.  相似文献   

2.
The acousto-optic interaction with leaky surface acoustic wave radiation into the bulk of YX-cut LiTaO3 crystals has been investigated. The light incidence and diffraction angles corresponding to the strongest acousto-optic interaction were calculated and measured as functions of the acoustic wave frequency. The dependencies of the diffracted light intensity on the amplitude of radio-frequency voltage applied to the interdigital transducer (IDT) were studied. Our acousto-optic measurements revealed generation, by the IDTs, of slow shear bulk acoustic waves propagating at different angles depending on their frequency. A secondary acousto-optic interaction from the bulk waves radiated by the receiving IDT has been studied.  相似文献   

3.
Surface acoustic wave (SAW) filters based on Mn‐doped ZnO films have been fabricated and effects of Mn‐doping on SAW properties are investigated. It is found that the electromechanical coupling coefficient (K2) of Zn0.913Mn0.087O films is 0.73 ± 0.02%, which is 73.8% larger than that of undoped ZnO films (0.42 ± 0.02%). Zn0.913Mn0.087O film filters also exhibit a lower absolute value of insertion loss (|IL|) of 16.1 dB and larger bandwidth (BW) of 5.9 MHz compared with that of undoped ZnO film filter. However, Zn0.952Mn0.048O film filters exhibit a smaller K2 of 0.34 ± 0.02%, larger |IL| of 26.9 dB and smaller BW of 3.5 MHz. It is suggested that the SAW properties can be improved by appropriate Mn‐doping and Mn–ZnO/Si multilayer structure with large d33 is promising for wide‐band and low‐loss SAW applications. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A c-axis orientated aluminium nitride (AlN) film on a 128° Y-X lithium niobate (LiNbO3) surface acoustic wave (SAW) device which exhibit a large electromechanical coupling coefficient (k2) and a high SAW velocity property, is needed for future communication applications. In this study, a c-axis orientated (B, Al)N film (with 2.6 at.% boron) was deposited on a 128° Y-X LiNbO3 substrate by a co-sputtering system to further boost SAW device properties. The XRD and TEM results show that the (B, Al)N films show highly aligned columns with the c-axis perpendicular to the substrate. The hardness and Young's modulus of (B, Al)N film on 128° Y-X LiNbO3 substrates are at least 17% and 7% larger than AlN films, respectively. From the SAW device measurement, the operation frequency characteristic of (B, Al)N film on 128° Y-X LiNbO3 is higher than pure AlN on it. The SAW velocity also increases as (B, Al)N film thickness increases (at fixed IDT wavelength). Furthermore, the k2 of (B, Al)N on the IDT/128° Y-X LiNbO3 SAW device shows a higher value than AlN on it.  相似文献   

5.
Surface acoustic wave (SAW) properties at the x-cut of relaxor-based 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN- 33%PT) ferroelectric single crystals are analyzed theoretically when poled along the [001]c cubic direction. It can be found that PMN-33%PT single crystal is a kind of material with a low phase velocity and high electromechanical coupling coefficient, and the single crystal possesses some cuts with zero power flow angle. The results are based on the material parameters at room temperature. The conclusions provide device designers with a few ideal cuts of PMN-33%PT single crystals. Moreover, choosing an optimal cut will dramatically improve the performance of SAW devices, and corresponding results for crystal systems working at other temperatures could also be figured out by employing the method.  相似文献   

6.
When a surface acoustic wave (SAW) propagates on the surface of a GaAs semiconductor, coupling between electrons in the two-dimensional electron gas beneath the interface and the elastic host crystal through piezoelectric interaction will attenuate the SAW. The coupling coemcient is ~alculated for the SAW propagating along an arbitrary direction. It is found that the coupling strength is strongly dependent on the propagating direction. When the SAW propagates along the [011] direction, the coupling becomes quite weak.  相似文献   

7.
It is theoretically and experimentally confirmed that the electromechanical coupling coefficient of SH waves propagating in a Y-cut lithium niobate plate along the X direction can exceed 30% when the plate thickness satisfies the condition h/λ= 0.02–0.15. This value of the coupling coefficient is approximately six to seven times greater than the maximal value obtained for SAW in the same material. Such a high value of K 2 offers a possibility to control the wave velocity by varying the electrical boundary conditions, e.g., by moving a conducting screen toward the plate surface. The effect of such a screen on the properties of the SH waves is studied both theoretically and experimentally. On the whole, the results of the study show that the use of SH waves offers considerable improvements in the parameters of the known SAW devices and also opens up the possibilities for the development of new devices and sensors that have to operate in contact with a liquid medium.  相似文献   

8.
钱莉荣  杨保和 《物理学报》2013,62(11):117701-117701
本文首先以刚度矩阵法为基础, 给出了ZnO薄膜/金刚石在四种不同激励条件下的有效介电常数计算公式. 然后以此为工具, 分别计算了多晶ZnO(002) 薄膜/多晶金刚石和单晶ZnO(002) 薄膜/多晶金刚石的声表面波特性, 并根据计算结果及设计制作声表面波器件的要求, 对ZnO膜厚的选择进行了详细地分析. 最后讨论了ZnO/金刚石/Si复合晶片可以忽略Si衬底对声表面特性影响时对金刚石膜厚的要求. 关键词: 声表面波 压电多层结构 有效介电常数 刚度矩阵法  相似文献   

9.
Theoretical fundamentals of modern methods of X-ray diffractometry of surface acoustic waves (SAW) are considered briefly. X-ray diffraction on SAW-modulated crystals under total external reflection conditions and the Bragg conditions for the YZ-cut of the LiNbO3 crystal is considered. Agreement of theoretical and experimental results makes it possible to use them for SAW diagnostics. Possibilities and limitations of listed methods for determining the SAW field parameters are discussed.  相似文献   

10.
When a surface acoustic wave (SAW) propagates on the surface of a GaAs semiconductor, coupling between electrons in the two-dimensional electron gas beneath the interface and the elastic host crystal through piezoelectric interaction will attenuate the SAW. The coupling coefficient is calculated for the SAW propagating along an arbitrary direction. It is found that the coupling strength is strongly dependent on the propagating direction. When the SAW propagates along the [011] direction, the coupling becomes quite weak.  相似文献   

11.
High-frequency surface acoustic wave (SAW) filters using undoped and V-doped ZnO films were fabricated on diamond. Compared with their counterparts, the SAW filters using V-doped ZnO films have higher electromechanical coupling coefficient of ∼2.9% and lower insertion loss. The filtering performance improvement is considered to be due to the ferroelectricity in V-doped ZnO films and the resultant high piezoresponse (∼110 pm/V), which is one order of magnitude larger than that of undoped ZnO films. In addition, more perfect (0 0 2) preferred orientation, better uniform grains and smoother surface of V-doped ZnO films also contribute to the filtering performance improvement.  相似文献   

12.
We perform a numerical analysis of the properties of surface acoustic waves (SAW) as well as leaky surface acoustic waves (LSAW) in piezoelectric KNbO3, Pb2KNb5O15 (PKN) and La3Ga5.5Nb0.5O14 (LGN) crystals. We determine optimal thermostable cuts and directions in which the SAWs have high phase velocity, a very high coefficient of electromechanical coupling. and a small angle between the phase and group velocities. We also found the cuts and directions in which the LSAWs can exist. The characteristics of the LSAWs (velocity, the coefficient of electromechanical coupling, angle between the phase and group velocities, temperature coefficient of velocity, and coefficient of surface absorption along the LSAW propagation direction) are calculated. N. I. Lobachevsky State University, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 42, No. 5, pp. 485–493, May 1999.  相似文献   

13.
The effects of surface acoustic wave (SAW) and resonance oscillation (RO) of bulk acoustic waves on the catalysis of metals were studied in an attempt to design a catalyst surface with artificially controllable functions for chemical reactions. In ethanol decomposition on a thin Cu film catalyst deposited on the propagation path of a shear horizontal leaky SAW, the SAW-on increased the activity for ethylene production remarkably but a little for acetaldehyde production. A poled ferroelectric z-cut LiNbO3 with a thickness extensional mode RO (TERO) and a x-cut LiNbO3 with a thickness shear mode RO (TSRO) were employed as a substrate, on which a thin Ag film catalyst was deposited. For ethanol decomposition, TERO increased ethylene production activity and the selectivity for ethylene production from 79 to 96%, whereas TSRO caused little activity enhancement for both ethylene and acetaldehyde production. The combination with the results of laser Doppler measurements showed that the activity enhancement and selectivity changes with SAW and RO of the acoustic waves are associated with dynamic large lattice displacement vertical to the surface.  相似文献   

14.
The orientation dependences of the phase velocity, the effective electromechanical coupling coefficient, and the angle between the wave normal and the energy flux vector are numerically calculated for zeroand first-order Lamb waves propagating in the (001) basal plane of a Bi12SiO20 cubic piezoelectric crystal. It is shown that the anisotropies of these modes are different and depend on the plate thickness h and the wavelength λ. For h/λ < 1, the mode anisotropy can exceed the anisotropy of the corresponding characteristics of surface acoustic waves propagating in the same plane; for h/λ > 1, it approximately coincides with the SAW anisotropy for all the characteristics.  相似文献   

15.
The interdigital transducer is an important device element in acousto-optic tunable filter (AOTF) and the surface acoustic wave (SAW) propagates in lithium niobate (LiNbO3) as a substrate in interdigital transducer. In the direction of x-cut y propagation in AOTF, the power-flux vector and propagation direction of the surface wave are not collinear, which decrease the RF-to-SAW waveguide coupling efficiency. In this paper, optimal program is proposed, giving the numerical calculation. We know that to improve the coupling efficiency the direction of interdigital transducer should be inclined about 4.5 in AOTF. The experiment shows a satisfactory result.  相似文献   

16.
杨天应  蒋书文  李汝冠  姜斌 《中国物理 B》2012,21(10):106801-106801
Tunable and switchable Ba 0.5 Sr 0.5 TiO 3 film bulk acoustic resonators(FBARs) based on SiO 2 /Mo Bragg reflectors are explored,which can withstand high temperature for the deposition of Ba x Sr 1 x TiO 3(BST) films at 800 C.The dc bias-dependent resonance may be attributed to the piezoelectricity of the BST film induced by an electrostrictive effect.The series resonant frequency is strongly dc bias-dependent and shifts downwards with dc bias increasing,while the parallel resonant frequency is only weakly dc bias-dependent and slightly shifts upwards at low dc bias( 45 V) while downwards at higher dc bias.The calculated relative tunability of shifts at series resonance frequency is around 2.3% and the electromechanical coupling coefficient is up to approximately 8.09% at 60-V dc bias,which can be comparable to AlN FBARs.This suggests that a high-quality tunable BST FBAR device can be achieved through the use of molybdenum(Mo) as the high acoustic impedance layer in a Bragg reflector,which not only provides excellent acoustic isolation from the substrate,but also improves the crystallinity of BST films withstanding higher deposition temperature.  相似文献   

17.
A promising approach to apply the Love wave concept to commercially available low-loss surface acoustic wave (SAW) devices of the type Murata SAF 380 is presented. Thin wave-guiding layers of variable thickness are coated on the piezoelectric substrate of the devices. Two different layer materials were used: sputtered SiO2 and a new polymer in this field, parylene C (poly-[2-chloro-p-xylylene]). Insertion loss, resonance frequency, frequency changes during protein precipitation and noise of the devices are discussed as a function of the thickness of the wave-guiding layer. It is demonstrated that the application of an optimized wave-guiding layer increases the sensitivity. When using SiO2 as wave-guiding layer, an optimum layer thickness of 4 μm leads to a detection limit of 1.7 pg/mm2. Therefore, the detection limit is improved by factor 7.7 as compared to uncoated SAW devices. Parylene-coated devices reach a detection limit of 2.9 pg/mm2 at an optimum layer thickness of 0.5 μm. This corresponds to an improvement by factor 4.3. As the SAW devices used in this study are commercially available at low costs, applying appropriate wave-guiding layers permits an application as chemical or biochemical sensors with excellent sensitivities. Moreover, parylene-coated devices combine the sensitivity increase by excitation of Love waves with an excellent protective effect against corrosive attacks by the surrounding medium. Therefore, these sensors are most suitable for biosensing in conducting buffer solutions.  相似文献   

18.
王艳  谢英才  张淑仪  兰晓东 《中国物理 B》2017,26(8):87703-087703
Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k~2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k~2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k~2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.  相似文献   

19.
Love wave propagation in functionally graded piezoelectric material layer   总被引:1,自引:0,他引:1  
Du J  Jin X  Wang J  Xian K 《Ultrasonics》2007,46(1):13-22
An exact approach is used to investigate Love waves in functionally graded piezoelectric material (FGPM) layer bonded to a semi-infinite homogeneous solid. The piezoelectric material is polarized in z-axis direction and the material properties change gradually with the thickness of the layer. We here assume that all material properties of the piezoelectric layer have the same exponential function distribution along the x-axis direction. The analytical solutions of dispersion relations are obtained for electrically open or short circuit conditions. The effects of the gradient variation of material constants on the phase velocity, the group velocity, and the coupled electromechanical factor are discussed in detail. The displacement, electric potential, and stress distributions along thickness of the graded layer are calculated and plotted. Numerical examples indicate that appropriate gradient distributing of the material properties make Love waves to propagate along the surface of the piezoelectric layer, or a bigger electromechanical coupling factor can be obtained, which is in favor of acquiring a better performance in surface acoustic wave (SAW) devices.  相似文献   

20.
Two-dimensional (2D) metal–organic framework (MOF) nanosheets have recently received extensive attention due to their ultra-thin thickness, large specific surface area, chemical and functional designability. In this study, an unconventional method using surface acoustic wave (SAW) technology is proposed to exfoliate large quantities and uniform layers of 2D MOF-Zn2(bim)4 nanosheets in a microfluidic system. We successfully demonstrated that the thickness of 2D MOF is effectively and accurately controlled by optimizing the SAW parameters. The mechanisms for the efficient exfoliation of 2D MOF nanosheets is attributed to both the electric and acoustic fields generated by the SAWs in the liquid. The electric field ionizes the methanol to produce H+ ions, which intercalate Zn2(bim)4 sheets and weaken the interlayer bonding, and the strong shear force generated by SAWs separates the MOF sheets. A yield of 66% for monolayer MOFs with a maximum size of 3.5 μm is achieved under the combined effect of electric and acoustic fields. This fast, low-energy exfoliation platform has the potential to provide a simple and scalable microfluidic exfoliation method for production of large-area and quantities of 2D MOFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号