首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A diode-end-pumped actively Q-switched eye-safe intracavity Raman laser at 1532 nm is demonstrated, with Nd:YVO4 as the laser crystal and BaWO4 as the Raman crystal. The highest average power of 1.5 W is obtained, with an incident pump of 12 W and a pulse repetition rate of 35 kHz, corresponding to a diode-to-Stokes conversion efficiency of 12.5%.  相似文献   

2.
We report on an 880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on a semiconductor saturable absorber mirror (SESAM), with a high optical-to-optical conversion efficiency of 67.3%, and a slope efficiency of 71%. When the absorbed pump power was 11 W, 7.4 W average output power of 1064 nm continuous-wave mode-locked laser was achieved. To our knowledge, this is the highest optical-to-optical conversion efficiency among all the published reports of 880 nm LD pumped SESAM passive mode-locked lasers. The repetition rate of mode-locked pulse was 80 MHz with 26 ps pulse width. The maximum pulse energy and peak power were 92.5 nJ and 3.6 kW, respectively.  相似文献   

3.
An efficient single-frequency continuous-wave Nd:YVO4 ring laser pumped at 880 nm is presented. With compact four-mirror ring cavity and optical isolator, we obtained an output power of 14.56 W at 1064 nm, corresponding to a slope efficiency of 61.7% and an optical-to-optical efficiency of 58.4% with respect to the absorbed pump power. The stability of the output power was better than ±0.5% over two hours. At the same time, a beam quality factor of M 2≈1.2 was measured and the line width of the longitudinal mode was about 25 MHz. To the best of our knowledge, this is the highest slope efficiency and optical-to-optical efficiency in single-frequency Nd:YVO4 ring laser.  相似文献   

4.
We report an efficient laser emission on the 1066 nm 4 F 3/2 to 4 I 11/2 transition in Nd:LuVO4 under the pump with diode laser at 888 nm. Continuous wave (CW) 11.2 W output power at 1066 nm is obtained under 18.3 W of incident pump power; the slope efficiency with respect to the incident pump power was 71.9%. Moreover, intracavity frequency doubling with LiB3O5 (LBO) nonlinear crystal yielded 4.2 W of green light at 533 nm. An optical-to-optical efficiency with respect to the incident pump power was 23.0%.  相似文献   

5.
We report an efficient laser emission on the 912 nm 4 F 3/2 to 4 I 9/2 transition in Nd:GdVO4 under the pump with diode lasers at 888 nm. Continuous wave (CW) 4.91 W output power at 912 nm is obtained under 18.3 W of incident pump power; the slope efficiency with respect to the incident pump power was 57.5%. Moreover, intracavity frequency doubling with BiB3O6 (BiBO) nonlinear crystal yielded 1.33 W of deep-blue light at 456 nm.  相似文献   

6.
A Nd:YVO4 crystal was pumped directly into the emitting level by a laser diode at 914 nm. We achieved an output power of 1.46 W at 1342 nm for an incident pump power of 18.3 W, corresponding to an optical-to-optical conversion efficiency of 8.0%. The fluctuation of the output power was better than 2.3% in the given 30 min. The beam quality M2 factor value was equal to 1.15 at the maximum output power.  相似文献   

7.
43.6 W near-diffraction-limited continuous-wave laser beam at 1342 nm in 880 nm laser-diode partially end-pumped Nd:YVO4 slab laser is presented. The slope efficiency and optical-to-optical efficiency with respect to absorbed pumping power were 45.4% and 35.9%, respectively. At output power of 34.5 W, the M 2 factors in unstable and stable directions were 1.3 and 1.2, respectively.  相似文献   

8.
J. Gao  X. Yu  B. Wei  X. D. Wu 《Laser Physics》2010,20(7):1590-1593
We present experimental investigation on quasi-three-level Nd:YVO4 laser operation at 914 nm under 879 nm diode pumping directly into emitting level. A maximal output power of 3.0 W under an absorbed pump power of 13.4 W was got, corresponding to an optical conversion efficiency of 22.4% and a slope efficiency of 40.3%. To the best of our knowledge, this is the first report on a Nd:YVO4 laser at 914 nm using rod-type single crystal as the gain medium and end pumped by diode directly into the emitting level.  相似文献   

9.
We report a red laser at 670.5 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1341 nm Nd:GdVO4 laser under in-band diode pumping at 912 nm. An LBO crystal, cut for critical type I phase matching is used for second harmonic generation of the laser. At an incident pump power of 8.9 W, as high as 347 mW of CW output power at 670.5 nm is achieved. The fluctuation of the red output power was better than 3.7% in the given 30 min, and the beam quality factor M 2 is 1.65.  相似文献   

10.
We report the efficient blue laser at 458 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a diode pumped Nd:LuVO4 laser on the 4 F 3/24 I 9/2 transition at 916 nm. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.2 W, as high as 1.73 W of continuous wave (CW) output power at 458 nm is achieved. The optical-to-optical conversion efficiency is up to 9.5%, and the fluctuation of the red output power was better than 3.5% in the given 30 min.  相似文献   

11.
We report a yellow-green laser at 544.5 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1089 nm Nd:LuVO4 laser under in-band diode pumping at 888 nm. An LBO crystal, cut for critical type I phase matching is used for second harmonic generation of the laser. At an incident pump power of 17.9 W, as high as 3.81 W of CW output power at 544.5 nm is achieved. The optical-to-optical conversion efficiency is up to 21.3%, and the fluctuation of the yellow-green output power was better than 3.7% in the given 4 h.  相似文献   

12.
We report a green laser at 532 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1064 nm Nd:Y0.36Gd0.64VO4 laser under in-band diode pumping at 880 nm. An GdCa4O(BO3)3 (GdCOB) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 17.8 W, as high as 2.92 W of CW output power at 532 nm is achieved. The optical-to-optical conversion efficiency is up to 16.4%, and the fluctuation of the green output power was better than 2.5% in the given 30 min.  相似文献   

13.
Y. L. Li 《Laser Physics》2011,21(11):1855-1858
We report an efficient laser emission on the 1064 nm 4 F 3/2 to 4 I 11/2 transition in mixed vanadate crystal Nd:Y0.36Gd0.64VO4 under the pump with diode laser at 880 nm. Continuous wave (CW) 10.7 W output power at 1064 nm is obtained under 17.8 W of incident pump power; the slope efficiency with respect to the incident pump power was 71.2%. Moreover, intracavity frequency doubling with LiB3O5 (LBO) nonlinear crystal yielded 4.6 W of green light at 532 nm. An optical-to-optical efficiency with respect to the incident pump power was 25.8%.  相似文献   

14.
Y. Dong  G. B. Ning 《Laser Physics》2011,21(12):2076-2079
We report a red laser at 672 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1343 nm Nd:LuVO4 laser under in-band diode pumping at 888 nm. An GdCa4O(BO3)3 (GdCOB) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 17.8 W, as high as 1.73 W of CW output power at 672 nm is achieved. The optical-to-optical conversion efficiency is up to 9.7%, and the fluctuation of the red output power was better than 3.3% in the given 30 min.  相似文献   

15.
We report efficient laser emission on the 914 nm 4 F 3/2 to 4 I 9/2 transition in Nd:YVO4 under the pump with diode lasers at 888 nm for the first time. Continuous wave 6.57 W output power at 914 nm is obtained from a V-type resonator under 18.3 W of absorbed pump power; the slope efficiency with respect to the absorbed pump power was 60.6%. Moreover, intracavity frequency doubling with BiB3O6 (BiBO) nonlinear crystal yielded 1.77 W of deep-blue light at 457 nm with beam quality characterized by an M2 factor of 1.25.  相似文献   

16.
We report the efficient compact red laser at 670 nm generation by intracavity frequency doubling of a continuous wave laser operation of a diode direct pumped Nd:GdVO4 laser on the 4 F 3/24 I 13/2 transition at 1340 nm. An LBO crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an absorbed pump power of 16.2 W, as high as 5.1 W of continuous wave output power at 670 nm is achieved with 15-mm-long LBO. The optical-to-optical conversion efficiency is up to 0.31, and the fluctuation of the red output power was better than 3.0% in the given 30 min. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4 F 5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

17.
We report a high-efficiency Nd:YVO4 laser pumped by an all-solid-state Q-switched Ti:Sapphire laser at 880 nm in this paper. Output power at 1064 nm with different-doped Nd:YVO4 crystals of 0.4-, 1.0- and 3.0-at.% under the 880 nm pumping was measured, respectively. Comparative results obtained by the traditional pumping at 808 nm into the highly absorbing 4F5/2 level were presented, showing that the slope efficiency and the threshold with respect to the absorbed pump power of the 1.0-at.% Nd:YVO4 laser under the 880 nm pumping was 17.5% higher and 11.5% lower than those of 808 nm pumping. In a 4-mm-thick, 1.0-at.% Nd:YVO4 crystal, a high slope efficiency of 75% was achieved under the 880 nm pumping, with an optical-to-optical conversion efficiency of 52.4%.  相似文献   

18.
The quasi-three-level 908-nm continuous-wave laser emission under direct diode laser pumping at 880 nm into emitting level 4 F 3/2 of Nd:YLF have been demonstrated. An end-pumped Nd:YLF crystal yielded 4.7 W of output power for 11.8 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power was 43.3%. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4 F 5/2 level, are given in order to prove the advantages of the 880-nm wavelength pumping.  相似文献   

19.
A passively Q-switched 1.06 μm laser with Cr4+:YAG saturable absorber by direct 879 nm diode pumping grown-together composite GdVO4/Nd:GdVO4 crystal to the emitting level was demonstrated in this paper. The characteristics of pulsed laser were investigated by using two kinds of Cr4+:YAG crystal with the initial transmissivity of 80 and 90%, respectively. When the T 0 = 90% Cr4+:YAG was used, an average output power of 1.59 W was achieved at an incident pump power of 10 W. The pulse width and repetition rate were 64.5 ns and 170 kHz, respectively. The thermal lens effect of laser crystal was analyzed.  相似文献   

20.
We report a green laser at 541.5 nm generation by intracavity frequency doubling of a continuous wave (cw) laser operation of a 1083 nm Nd:GdVO4 laser under 880 nm diode pumping into the emitting level 4 F 3/2. A LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 17.8 W, as high as 2.52 W of cw output power at 541.5 nm is achieved. The optical-to-optical conversion efficiency is up to 14.2%, and the fluctuation of the green output power was better than 3.6% in the given 30 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号