首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Three different adsorbent materials, which are promising for pre-combustion CO2 capture by a PSA (Pressure Swing Adsorption) process, are synthesized, pelletized and characterized. These materials are USO-2-Ni metal organic framework (MOF), mesoporous silica MCM-41 and a mixed material consisting of UiO-67 MOF bound with MCM-41. On these materials, equilibrium adsorption isotherms of CO2 and H2 are measured at different temperatures (25–140?°C) in a wide pressure range (up to 15?MPa). From the experimental data the parameters of different isotherm equations (Langmuir, Sips and Quadratic) are determined, together with the isosteric heats of adsorption. Binary adsorption of CO2/H2 mixtures on USO-2-Ni MOF is additionally measured and compared to predicted values using IAST (Ideal Adsorbed Solution Theory) showing a good agreement. The potential of the materials for the application of interest is evaluated by looking at their cyclic working capacity and compared to those of a commercial activated carbon. From this evaluation especially the USO-2-Ni MOF adsorbent looks promising compared to the commercial activated carbon. For the other two materials a smaller improvement, which is limited to lower temperatures, is expected.  相似文献   

2.
In this work, we report new experimental data of pure and binary adsorption equilibria of carbon dioxide and methane on the activated carbon RB2 at 273 and 298 K. The pressure range studied were 0–3.5 MPa for pure gases and 0–0.1 MPa for mixtures. The combination of the generalized Dubinin model to describe the pure CO2 and CH4 isotherms with the IAST (Ideal Adsorbed Solution Theory) for the mixtures provide a method for the calculation of the binary adsorption equilibria. This formulation predicts with acceptable accuracy the binary adsorption data and can easily be integrated in general dynamic simulation of PSA (pressure swing adsorption process) adsorption columns. It involves only three parameters, independent of the temperature, and directly determined with only one adsorption isotherm of CO2.  相似文献   

3.
Paul A. Webley 《Adsorption》2014,20(2-3):225-231
The capture of CO2 from process and flue gas streams and subsequent sequestration was first proposed as a greenhouse gas mitigation option in the 1990s. This proposal spawned a series of laboratory and field tests in CO2 capture which has now grown into a major world-wide research effort encompassing a myriad of capture technologies and ingenious flow sheets integrating power production and carbon capture. Simultaneously, the explosive growth in materials science in the last two decades has produced a wealth of new materials and knowledge providing us with new avenues to explore to fine tune CO2 adsorption and selectivity. Laboratory and field studies over the last decade have explored the synergy of process and materials to produce numerous CO2 capture technologies and materials based on cyclic adsorption processes. In this brief perspective, we look at some of these developments and comment on the application and limitations of adsorption process to CO2 capture. We identify major engineering obstacles to overcome as well as potential breakthroughs necessary to achieve commercialization of adsorption processes for CO2 capture. Our perspective is primarily restricted to post-combustion flue gas capture and CO2 capture from natural gas.  相似文献   

4.
Three kinds of activated carbons were prepared using coconut-shells as carbon precursors and characterized by XRD, FT-IR and texture property test. The results indicate that the prepared activated carbons were mainly amorphous and only a few impurity groups were adsorbed on their surfaces. The texture property test reveals that the activated carbons displayed different texture properties, especially the micropore size distribution. The adsorption capacities of the activated carbons were investigated by adsorbing CH4, CO2, N2 and O2 at 25 ?C in the pressure range of 0-200 kPa. The results reveal that all the activated carbons had high CO2 adsorption capacity, one of which had the highest CO2 adsorption value of 2.55 mmol/g at 200 kPa. And the highest adsorption capacity for CH4 of the activated carbons can reach 1.93 mmol/g at 200 kPa. In the pressure range of 0-200 kPa, the adsorption capacities for N2 and O2 were increased linearly with the change of pressure and K-AC is an excellent adsorbent towards the adsorption separation of greenhouse gases.  相似文献   

5.
Two series of zeolite X/activated carbon composites with different ratios of zeolite and activated carbon were prepared through a combination process of CO2 activation of the mixtures of elutrilithe and pitch and subsequent hydrothermal crystallization in alkaline solution. An additional surface modification was achieved in diluted NH4Cl solution. CO2 and N2 uptakes on the composites before and after modification were determined for pressures up to 101?kPa at 273 and 298?K, respectively. Langmuir-Freundlich and Toth adsorption models were used to describe the adsorption isotherms of CO2 and the corresponding heats of adsorption were estimated with the Clausius-Clapeyron equation. Both before and after modification, all composites exhibited a remarkable preferential adsorption of CO2 compared to N2, with the modified composites showing a higher adsorption selectivity to CO2 over N2 than the unmodified composites. With an increasing ratio of zeolite in the composites, adsorption capacity and adsorption heat of CO2 on the composites increased simultaneously. Lower adsorption heat was observed both before and after modification especially at the low-loading region and when there was less energetic heterogeneity on the surface of the modified composites. The results may be attributed to the elimination of strong basic sites on the modified composites, which is favorable for desorption of CO2 on the adsorbents and application in pressure swing adsorption processes.  相似文献   

6.
Vacuum pressure swing adsorption (VPSA) for CO2 capture has attracted much research effort with the development of the novel CO2 adsorbent materials. In this work, a new adsorbent, that is, pitch-based activated carbon bead (AC bead), was used to capture CO2 by VPSA process from flue gas. Adsorption equilibrium and kinetics data had been reported in a previous work. Fixed-bed breakthrough experiments were carried out in order to evaluate the effect of feed flowrate, composition as well as the operating pressure and temperature in the adsorption process. A four-step Skarstrom-type cycle, including co-current pressurization with feed stream, feed, counter-current blowdown, and counter-current purge with N2 was employed for CO2 capture to evaluate the performance of AC beads for CO2 capture with the feed compositions from 15–50% CO2 balanced with N2. Various operating conditions such as total feed flowrate, feed composition, feed pressure, temperature and vacuum pressure were studied experimentally. The simulation of the VPSA unit taking into account mass balance, Ergun relation for pressure drop and energy balance was performed in the gPROMS using a bi-LDF approximation for mass transfer and Virial equation for equilibrium. The simulation and experimental results were in good agreement. Furthermore, two-stage VPSA process was adopted and high CO2 purity and recovery were obtained for post-combustion CO2 capture using AC beads.  相似文献   

7.
The separation between CH4 and N2 bears importance in coalbed methane enrichment, and activated carbon is a major adsorbent for industrial PSA (pressure swing adsorption) separation. However, the adsorption of both gases shows supercritical features, and the physicochemical properties are also similar, which results in similar adsorption behavior and renders the separation difficult. To maximize the separation coefficient, the effect of carbon pore structure on the separation was studied and a series of carbons was prepared at different extent of activation. The effect of specific surface area, pore size and pore volume on the separation coefficient was observed and a linear correlation between the separation coefficient and the small pore (0.7–1.3?nm) volume reduced to unit surface area was shown.  相似文献   

8.
The performance of multi-bed pressure swing adsorption (PSA) process for producing high purity hydrogen from synthesis gas was studied experimentally and theoretically using layered beds of activated carbon and zeolite 5A. Nonisothermal and nonadiabatic models, considering linear driving force model and Dual-site Langmuir adsorption isotherm model, were used. The effects of the following PSA variables on separation process were investigated: linear velocity of feed, adsorption time and purge gas quantity. As a result, we recovered a high purity H2 product (99.999%) with a recovery of 66% from synthesis gas when the pressure was cycled between 1 and 8 atm at ambient temperature.  相似文献   

9.
Adsorption may be a potentially attractive alternative to capturing CO2 from stationary sources in the context of Carbon Capture and Sequestration (CCS) technologies. Activated carbon and zeolites are state-of-art adsorbents which may be used for CO2 adsorption, however physisorption alone tends to be insignificant at high temperatures. In the present work, commercial adsorbents have been impregnated with monoethanolamine (MEA) and triethanolamine (TEA) in order to investigate the effect of the modified surface chemistry on CO2 adsorption, especially above room temperature. Adsorption isotherms for CO2, N2 and CH4 were measured in a gravimetrically system in the pressure range of UHV to 10 bar, at 298 and 348 K for activated carbon and zeolite 13X supports. The adsorbed concentration of CO2 was significantly higher than those of CH4 and N2 for both adsorbents in the whole pressure range studied, zeolite 13X showing a remarkable affinity for CO2 at very low pressures. However, at 348 K, the adsorbed concentration of CO2 decreases significantly. The supports impregnated with concentrated amine solutions and dried in air suffered a detrimental effect on the textural properties, although CO2 uptake became much less susceptible to temperature increase. Impregnations carried out with dilute solution followed by drying in inert atmosphere yielded materials with very similar textural characteristics as compared to the parent support. CO2 isotherms in such materials showed a significant change with similar capacities at 348 K as compared to the original support at 298 K in the case of activated carbons. The impregnated zeolite showed a decrease in adsorbed phase concentration in low pressures for a given temperature, but the adsorbed amount also seemed to be less affected by temperature. These results are promising and indicate that CO2 adsorption may be enhanced despite high process temperatures (e.g. 348 K), if convenient impregnation and drying methods are applied.  相似文献   

10.
Waste ion-exchange resin was utilized as precursor to produce activated carbon by KOH chemical activation, on which the effects of different activation temperatures, activation times and impregnation ratios were studied in this paper. The CO2 adsorption of the produced activated carbon was tested by TGA at 30 °C and environment pressure. Furthermore, the effects of preparation parameters on CO2 adsorption were investigated. Experimental results show that the produced activated carbons are microporous carbons, which are suitable for CO2 adsorption. The CO2 adsorption capacity increases firstly and then decreases with the increase of activation temperature, activation time and impregnation rate. The maximum adsorption capacity is 81.24 mg/g under the condition of 30 °C and pure CO2. The results also suggest that waste ion-exchange resin-based activated carbons possess great potential as adsorbents for post-combustion CO2 capture.  相似文献   

11.
Dynamic adsorption–desorption measurements of CO2 and CH4 in amino-MIL-53(Al) were carried out in an adsorption breakthrough setup at different temperatures (303, 318, and 333 K) and pressures (1, 5, and 30 bar) to study the desorption dynamics of CO2 in amino-MIL(Al) as it plays an important role in the design of pressure swing adsorption (PSA) process for the upgrading of biogas. 13X zeolite was used as a reference material. The dynamic adsorption selectivity as well as the desorption efficiency of CO2 in both amino-MIL-53(Al) and 13X zeolite were calculated to evaluate the potential of amino-MIL-53(Al) for the upgrading of biogas by PSA process.  相似文献   

12.
Given the great interest in the CO2 removal and decreasing their impact on the environment, in this work, a calorimetric study of CO2 adsorption on different activated carbons was performed. For this purpose, we used two methodologies for the determination heat of CO2 adsorption: determination of CO2 isotherms at different temperatures and adsorption calorimetry. The heats determined by these two techniques were compared. In this regard, carbonaceous materials of granular and monolithic types were prepared, characterized, and functionalized for carbon dioxide adsorption. As precursor material, African palm stones that were activated with H3PO4 and CaCl2 at different concentrations was used. The obtained materials were functionalized in gas phase with NH3 and liquid phase with NH4OH, with the intention to incorporate the surface basic groups (amines or nitrogen groups) and subsequently were studied for CO2 adsorption at 273 K and atmospheric pressure. For characterization of these materials, the following techniques are used: N2 adsorption at 77 K and immersion calorimetry in different solvents. The experimental results show the obtaining of micropores and mesoporous (moderately) materials, with surface area between 430 and 1,425 m2 g?1 and pore volumes between 0.17 and 0.53 cm3 g?1. It was determined that there is a difference between the heats of CO2 adsorption obtained by the techniques employed. This deviation between the values corresponds to the methodological difference between the two experiments. In this work, we obtained a maximum adsorption capacity of CO2, which is greater than 334 mg CO2 g?1 at 273 K and 1 bar in carbon materials with moderate surface area and pores volume.  相似文献   

13.
《中国化学快报》2023,34(8):108039
Adsorptive separation of acetylene (C2H2) from carbon dioxide (CO2) is of great significance in petrochemical industry, but still remains as a daunting challenge by reason of their very similar molecular sizes/shapes and physical properties. Herein, we reported a new perchlorate-based hybrid ultramicroporous material ZJU-194 that features the unique flexible-robust network decorated with rich bare oxygen atoms. By integrating the refined pore space as well as specific binding sites, the activated ZJU-194 (ZJU-194a) enables a selective two-step gate-opening adsorption toward C2H2, but blocks off the further uptake of CO2. It thus exhibits a very high C2H2/CO2 selectivity (22.4) at ambient conditions, which is superior to most reported MOF materials. Its complete separation for 50/50 C2H2/CO2 mixtures is further evidenced by the dynamic breakthrough experiments.  相似文献   

14.
Applying activated carbons for SO2 adsorption and conversion to H2SO4, as a dry process, has been considered the development direction of desulfurization technology. Coal-based activated carbon, coconut shell activated carbon, single wall carbon nanotube and multi-wall carbon nanotubes were used as typical carbonaceous materials to study the SO2 adsorption mechanism. SEM, N2 adsorption, XPS and fixed-bed reaction system were employed to study the morphology, pore structure, surface functional groups and SO2 adsorption behaviors of the four adsorbents. The fixed-bed experiment was carried out at normal pressure and SO2 concentration was set 1,000 ppm. According to SEM and N2 adsorption results, hierarchical pore structure was an important characteristic of activated carbon. Aggregation was an important characteristic of CNTs. Mesopores and macropores took the dominance of pore structure in CNTs. According the SO2 adsorption data and correlation analysis, it can be concluded that the dominant adsorption type on activated carbons does not alter with adsorption temperature changing. However, the adsorption type of SO2 adsorption on CNTs changes with adsorption temperature varying. With adsorption temperature increasing, the dominant adsorption type transforms to chemisorption by physisorption. Higher-density π–π* in carbon nanotubes may be the active sites for the SO2 chemical adsorption. Micropores with the diameter smaller than 0.7 nm were the best SO2 adsorption place for both activated carbons and carbon nanotubes. The results provided a profound insight into the microstructure and SO2 adsorption mechanism of the two kinds of carbonaceous materials.  相似文献   

15.
Christian Voss 《Adsorption》2014,20(2-3):295-299
CO2 removal from gaseous streams is one of the most important separation tasks in this decade. Adsorption processes can contribute in a wide range to this topic, thus an enormous effort is performed respectively in research and industry. In two scenarios the competitiveness of pressure swing adsorption (PSA) and vacuum pressure swing adsorption technology is assessed: Carbon capture from hydrogen production by steam methane reforming for enhanced oil recovery and CO2 removal from direct reduction processes for iron making. Additionally, industrial requirements, project as well as operation driven, have to be considered. Robustness and stable operation is as important as optimized captial expenditure and operational expenditure. Considering economical and operational aspects PSA processes are the most attractive alternatives in the presented scenarios.  相似文献   

16.
Ordered nanoporous carbons (ONCs) were prepared using a soft-templating method. To improve the CO2 adsorption efficiency, ONCs were chemically activated to obtain high specific surface area and micro-/mesopore volume with different KOH amounts (i.e., 0, 1, 2, 3, and 4) as an activating agent. The prepared nanoporous carbons (NCs) materials were analyzed by low-angle X-ray diffraction for confirmation of synthesized ONCs structures. The structural properties of the NCs materials were analyzed by high-angle X-ray diffraction. The textural properties of the NCs materials were examined using the N2/77 K adsorption isotherms according to the Brunauer–Emmett–Teller equation. The CO2 adsorption capacity was measured by CO2 isothermal adsorption at 298 K/1 bar. From the results, the NCs activated with KOH showed that the increasing specific surface areas and total pore volumes resulted in the enhancement of CO2 adsorption capacity.  相似文献   

17.
《中国化学会会志》2017,64(9):1041-1047
Activated carbons with a high mesoporous structure were prepared by a one‐stage KOH activation process without the assistance of templates and further used as adsorbents for CO2 capture. The physical and chemical properties as well as the pore structures of the resulting mesoporous carbons were characterized by N2 adsorption isotherms, scanning electron microscopy (SEM ), X‐ray diffraction (XRD ), Raman spectroscopy, and Fourier transform infrared (FTIR ) spectroscopy. The activated carbon showed greater specific surface area and mesopore volume as the activation temperature was increased up to 600°C, showing a uniform pore structure, great surface area (up to ~815 m2/g), and high mesopore ratio (~55%). The activated sample exhibited competitive CO2 adsorption capacities at 1 atm pressure, reaching 2.29 and 3.4 mmol/g at 25 and 0°C, respectively. This study highlights the potential of well‐designed mesoporous carbon as an adsorbent for CO2 removal and widespread gas adsorption applications.  相似文献   

18.
Kinetic Separation of Oxygen and Argon Using Molecular Sieve Carbon   总被引:1,自引:0,他引:1  
A pressure-swing adsorption (PSA) simulation study was performed for the separation of a mixture of 95% O2 and 5% Ar using a molecular sieve carbon (MSC) as the adsorbent. Two PSA cycles have been outlined to maximize the recovery of either argon or oxygen as a high purity product. The effect of cycle parameters such as cocurrent depressurization pressure, purge/feed ratio, pressure ratio and adsorption pressure on the separation of O2/Ar has been studied. It was found that it is feasible to obtain an argon product of purity in excess of 80% with reasonably high recovery using one of the cycles. The other cycle is capable of producing high purity oxygen (>99%) at high recovery (>50%) with reasonably high product throughputs. The PSA process can be conducted at room temperature and hence has an advantage over conventional processes like cryogenic distillation and cryogenic adsorption.  相似文献   

19.
We present breakthrough experiments in a fixed bed adsorber packed with commercial activated carbon involving feed mixtures of carbon dioxide and hydrogen of different compositions. The experiments are carried out at four different temperatures (25?°C, 45?°C, 65?°C and 100?°C) and seven different pressures (1?bar, 5?bar, 10?bar, 15?bar, 20?bar, 25?bar and 35?bar). The interpretation of the experimental data is done by describing the adsorption process with a detailed one-dimensional model consisting of mass and heat balances and several constitutive equations, such as an adsorption isotherm and an equation of state. The dynamic model parameters, i.e. mass and heat transfer, are fitted to one single experiment (reference experiment) and the model is then further validated by predicting the remaining experiments. Furthermore, the choice of the isotherm model is discussed. The assessment of the model accuracy is carried out by comparing simulation results and experimental data, and by discussing key features and critical aspects of the model. This study is valuable per se and a necessary step toward the design, development and optimization of a pressure swing adsorption process for the separation of CO2 and H2 for example in the context of a pre-combustion CO2 capture process, such as the integrated gasification combined cycle technology.  相似文献   

20.
Three different porous metal organic framework (MOF) materials have been prepared with and without uncoordinated amine functionalities inside the pores. The materials have been characterized and tested as adsorbents for carbon dioxide. At 298 K the materials adsorb significant amount of carbon dioxide, the amine functionalised adsorbents having the highest CO2 adsorption capacities, the best adsorbing around 14 wt% CO2 at 1.0 atm CO2 pressure. At 25 atm CO2 pressure, up to 60 wt% CO2 can be adsorbed. At high pressures the CO2 uptake is mostly dependent on the available surface area and pore volume of the material in question. For one of the iso-structural MOF pairs the introduction of amine functionality increases the differential adsorption enthalpy (from isosteric method) from 30 to around 50 kJ/mole at low CO2 pressures, while the adsorption enthalpies reach the same level at increase pressures. The high pressure experimental results indicate that MOF based solid adsorbents can have a potential for use in pressure swing adsorption of carbon dioxide at elevated pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号