首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of Cu(II) solid-contact ion-selective electrodes, based on 1,2-di-(o-salicylaldiminophenylthio)ethane as a neutral carrier, is presented. For the electrodes construction, unmodified carbon ink (type 1 electrode) and polymer membrane-modified carbon ink (type 2 electrode) were used as solid support and transducer layer. Also, carbon ink composite polymer membrane electrode (type 3 electrode) was prepared. The analytical performance of the electrodes was evaluated with potentiometry, while bulk and interfacial electrode features were provided with electrochemical impedance spectroscopy. It is shown that modification of carbon ink with polymer membrane cocktail decreases the bulk contact resistance of the transducer layer and polymer membrane, thus enhancing the analytical performance of the electrode in terms of sensitivity, linear range, and stability of potential. The optimized electrodes of types 2 and 3 exhibit a wide linear range with detection limits of 1.8 × 10−6 and 1.6 × 10−6 M, respectively. They are suitable for determination of Cu2+ in analytical measurements by direct potentiometry and in potentiometric titrations, within pH between 2.3 and 6.5. The electrodes are selective for Cu2+ over a large number of tested transition and heavy metal ions.  相似文献   

2.
A capacitive biosensor for the detection of bacterial endotoxin has been developed. Endotoxin-neutralizing protein derived from American horseshoe crab was immobilized to a self-assembled thiol layer on a biosensor transducer (Au). Upon injection of a sample containing endotoxin, a decrease in the observed capacitive signal was registered. Endotoxin could be determined under optimum conditions with a detection limit of 1.0 × 10−13 M and linearity ranging from 1.0 × 10−13 to 1.0 × 10−10 M. Good agreement was achieved when applying endotoxin preparations purified from an Escherichia coli cultivation to the capacitive biosensor system, utilizing the conventional method for quantitative endotoxin determination, the Limulus amebocyte lysate test as a reference. The capacitive biosensor method was statistically tested with the Wilcoxon signed rank test, which proved the system is acceptable for the quantitative analysis of bacterial endotoxin (P < 0.05). Figure The flow-injection capacitive biosensor system and the capacitive properties of the transducer surface, where CSAM is the capacitance change of the self-assembled thiol monolayer, CP is the capacitance change of the protein layer, Ca is the capacitance change of the analyte layer and CTotal is the total capacitance change measured at the working electrode/solution interface (modified from Limbut et al., 2006. Biosens Bioelectron 22: 233-240)  相似文献   

3.
The performance of solid-contact coated-wire-type electrodes with plasticized poly(vinyl chloride) membranes containing metalloporphyrins as anion-selective ionophores is reported. The membranes are deposited on transducers based on graphite pastes and graphite rods. The hydrophobicity of the underlying conductive transducer surface is found to be a key factor that influences the formation of an aqueous layer beneath the polymer film. Elimination of this ill-defined water layer greatly improves the electrochemical properties of the ion-sensors, such as electromotive force stability and lifetime. Only highly lipophilic electrode substrates, namely graphite paste with mineral oil, were shown to prevent the formation of aqueous layer underneath the ion-sensing membrane. The possibility of employing Co(III)-tetraphenylporphyrin both as NO2 selective ionophore and as electron- and ion-conducting species to ensure ion-to-electron translation was also discussed based on the results of preliminary experiments.  相似文献   

4.
An all-solid-state polymeric membrane Pb2+ ion-selective electrode (Pb2+-ISE) based on bimodal pore C60 (BP-C60) as solid contact has been developed. A BP-C60 film can be readily formed on the surface of a glassy carbon electrode by electrochemical deposition. Cyclic voltammetry and electrochemical impedance spectroscopy have been employed to characterize the BP-C60 film. The large double layer capacitance and fast charge-transfer capability make BP-C60 favorable to be used as solid contact for developing all-solid-state ISEs. The all-solid-state BP-C60-based Pb2+-ISE shows a Nernstian response in the range from 1.0 × 10−9 to 1.0 × 10−3 M with a detection limit of 5.0 × 10−10 M. The membrane electrode not only displays an excellent potential stability with the absence of a water layer between the ion-selective membrane and the underlying BP-C60 solid contact, but also is insensitive to interferences from O2, CO2 and light. The proposed solid-contact Pb2+-ISE has been applied to determine Pb2+ in real water samples and the results agree well with those obtained by anodic stripping voltammetry.  相似文献   

5.
A simple and robust approach for the development of solid-state ion-selective electrodes (ISEs) using nanomaterials as solid contacts is described. The electrodes are fabricated by using the mixture of an ionic liquid (IL) and a nanomaterial as intermediate layer, formed by melting the IL. Tetradodecylammonium tetrakis(4-chlorophenyl)borate (ETH 500) is chosen as an model of IL to provide strong adhesion between the inner glassy carbon electrode and the intermediate layer. Nanomaterials including single-walled carbon nanotubes (SWCNTs) and graphene were used as active ion-to-electron transducers between the glassy carbon electrode and the ionophore-doped ISE membrane. By using the proposed approach, the solid-contact Cu2+- and Pb2+-selective electrodes based on ETH 500/SWCNTs and ETH 500/graphene as transducers, respectively, have been fabricated. The proposed electrodes show detection limits in the nanomolar range and exhibit a good response time and excellent stability.  相似文献   

6.
The electrode characteristics and selectivities of PVC-based thiocyanate selective polymeric membrane electrode (PME) incorporating the newly synthesized zinc complex of 6,7:14,15-Bzo2-10,11-(4-methylbenzene)-[15]-6,8,12,14-tetraene-9,12-N2-1,5-O2 (I 1 ) and zinc complex of 6,7:14,15-Bzo2-10,11-(4-methylbenzene)-[15]-6,14-diene-9,12-dimethylacrylate-9,12-N2-1,5-O2 (I 2 ) are reported here. The best response was observed with the membrane having a composition of I2:PVC:o-NPOE:HTAB in the ratio of 6:33:59:2 (w/w; milligram). This electrode exhibited Nernstian slope for thiocyanate ions over working concentration range of 4.4 × 10−7 to 1.0 × 10−2 mol L−1 with detection limit of 2.2 × 10−7 mol L−1. The performance of this electrode was compared with coated graphite electrode (CGE), which showed better response characteristics w.r.t Nernstian slope 59.0 ± 0.2 mV decade−1 activity, wide concentration range of 8.9 × 10−8 to 1.0 × 10−2 mol L−1 and detection limit of 6.7 × 10−8 mol L−1. The response time for CGE and PME was found to be 8 and 10 s, respectively. The proposed electrode (CGE) was successfully applied to direct determination of thiocyanate in biological and environmental samples and also as indicator electrode in potentiometric titration of SCN ion.  相似文献   

7.
Utilizing the fascinating properties of montmorillonite calcium (MMT-Ca), such as huge cationic exchange capacity, strong adsorptive ability, high chemical and mechanical stability, an MMT-Ca modified carbon paste electrode (CPE) was constructed for the sensitive determination of Pb2+. In 0.01 mol·L−1 HCl, Pb2+ was firstly exchanged and accumulated on an MMT-Ca modified CPE surface and secondly reduced to Pb at −0.90 V. In the following potential sweep from −0.90 to −0.50 V, reduced Pb was oxidized, resulting in an obvious stripping peak at −0.58 V. After optimizing the parameters, such as determining medium, content of MMT-Ca, accumulation potential and time, an electrochemical method was developed for the analysis of Pb2+. Compared with bare CPE, the MMT-Ca modified CPE significantly enhances the sensitivity of Pb2+ analysis. The limit of detection is evaluated to be 6.0 × 10−9 mol L−1 Pb2+. Finally, this method was successfully employed to determine trace levels of Pb2+ in water samples. The first two authors contribute equally do this work  相似文献   

8.
A Nafion/multi-wall carbon nanotubes (MWNT) composite film-modified electrode was fabricated. The modified electrode showed excellent electrocatalytic activity toward ascorbic acid (AA) and uric acid (UA) in 0.1-mol L−1 NaCl medium (pH 6.5). Compared to the bare electrode that only displayed a broad and overlapped oxidation peak, the Nafion/MWNT film-modified electrode not only remarkably enhanced the anodic peak currents of AA and UA but also avoided the overlapping of the anodic peaks of AA and UA with a 320-mV separation of both peaks. Under the optimized conditions, the peak currents of AA and UA were proportional to their concentration at the ranges of 8.0 × 10−5 to 6.0 × 10−3 mol L−1 and 6.0 × 10−7 to 8.0 × 10−5 mol L−1, respectively. The proposed method was used for the detection of AA and UA in real samples with satisfactory results.  相似文献   

9.
In this work, a novel all-solid-state polymeric membrane Pb2+-selective electrode was developed by using for the first time poly(2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) as solid contact. To demonstrate the ion-to-electron transducing ability of MEH-PPV, chronopotentiometry and electrochemical impedance spectroscopy measurements were carried out. The proposed electrodes showed a Nernstian response of 29.1 mV decade−1 and a lower detection limit of subnanomolar level. No water film was observed with the conventional plasticized PVC membrane. This work demonstrates a new strategy for the fabrication of robust potentiometric ion sensors.  相似文献   

10.
The feasibility of using polymeric membrane fluoride-selective electrodes based on zirconium(IV) 5,10,15,20-tetraphenylporphyrin as a detector in a flow-injection analysis (FIA) system for glucose determination was examined. The optimization of enzymatic reactions, FIA system configuration and enzyme-immobilization process was performed. It was shown that the resulting flow-injection system exhibits good working parameters, such as reproducibility, linear range of glucose concentration (3 × 10−3–10−1 M), sampling rate (60 samples per minute) and lifetime (over 1 month). The performance of the polymeric membrane electrode was similar to that of a crystalline LaF3 electrode. The results of glucose determination in synthetic samples with the proposed system show good agreement with real glucose concentrations.  相似文献   

11.
The virgin activated carbon (AC) was oxidized by 30% H2O2 under the ultrasonic condition for 6 h (denoted as AC-6). The electrochemical response of Pb2+ at the AC-6 modified paste electrode was investigated, suggesting that AC-6 shows much higher accumulation efficiency to trace levels of Pb2+. Based on this, a sensitive and convenient electrochemical method was developed for the determination of Pb2+ utilizing the excellent properties of AC-6. In pH 3.6 HAc-NaAc buffer, Pb2+ was easily accumulate at the surface of AC-6 modified paste electrode, then reduced to Pb at −1.20 V. During the following anodic sweep, the reduced Pb was oxidized and resulted in an oxidation stripping peak at −0.58 V. The stripping peak current is proportional to the concentration of Pb2+ over the range from the 8.0 × 10−9 to 2.0 × 10−6 mol l−1, and the limit of detection is as low as 2.0 × 10−9 mol l−1. Finally, this newly-developed method was successfully employed to determine Pb2+ in water samples.  相似文献   

12.
Poly(phenol red) (denoted as PPR) films were electrochemically synthesized on the surface of a glassy carbon electrode (GCE) by cyclic voltammetry to obtain a chemically modified electrode (denoted as PPR-GCE). The growth mechanism of PPR films was studied by attenuated total reflection spectroscopy. This PPR-GCE was used to develop a novel and reliable method for the determination of trace Pb2+ by anodic stripping differential pulse voltammetry. At optimum conditions, the anodic peak exhibits a good linear concentration dependence in the range from 5.0 × 10−9 to 5.0 × 10−7 mol L−1 (r = 0.9989). The detection limit is 2.0 × 10−9 mol L−1 (S/N = 3). The method was employed to determine trace levels of Pb2+ in industrial waste water samples. Correspondence: Gongjun Yang, Ming Shen, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China  相似文献   

13.
The voltammetric determination of 2-mercaptobenzimidazole (MBI) was studied by using a glassy carbon electrode (GCE) coated with polymeric nickel and copper tetraaminophthalocyanine (poly-NiTAPc and poly-CuTAPc) membrane. The polymeric membrane decreases the overpotential of oxidation of MBI by 136.2 and 115.0 mV and increases the oxidation peak current by about 3.4 and 3.3 times, while the reduction peak potential shifts positively by 113.0 and 84.1 mV and the peak current increases by about 10 and 7 times in 0.1 mol·l−1 phosphate buffer solution (PBS) at pH = 2.0 for poly-NiTAPc and poly-CuTAPc, respectively, compared to the unmodified GCE. The results indicated that the developed electrode exhibited efficient electrocatalytic activity for MBI with relatively high sensitivity, stability, and long life. The oxidation and reduction peak currents of MBI were linear to its concentrations ranging from 8.0 × 10−5 to 1.0 × 10−3 mol·l−1 at poly-NiTAPc and from 2.0 × 10−5 to 1.0 × 10−3 mol·l−1 at poly-NiTAPc membranes modified electrodes, respectively, with a low limit of detection.  相似文献   

14.
 A lead electrode was studied in 6 and 12 M H3PO4. Oxidation of a freshly polished electrode occurred in the −0.5 to −0.3 V vs. SCE range, and led to PbHPO4 growth on the electrode surface. The dissolution of this layer by electrochemical reduction occurred between −0.5 and −0.7 V. The influence of temperature (20 °C and 65 °C) was investigated and showed that the anodic and the cathodic peaks were increasing, and more markedly for the 12 M H3PO4. The ratio Q cathodic/Q anodic (Q=electrical charge flowing through the electrode) was equal or close to the unity at 20 °C and decreased as the temperature was increased. The influence of Cl, Br and I ions was also evaluated. The addition of Cl and Br predominantly led to Pb5(PO4)3Cl and Pb5(PO4)3Br, respectively, while I led to a mixture of PbI2 and PbHPO4. Received: 18 July 1999 / Accepted: 2 November 1999  相似文献   

15.
The voltammetric behavior of folic acid (FA) at a multi-walled carbon nanotube (MWNT) modified gold electrode has been investigated by cyclic voltammetry, chronoamperometry and chronocoulometry. The modified electrode exhibits a good promoting effect on the electrochemical reaction of FA. FA can generate a well-defined anodic peak at around 0.83 V (vs. SCE) in 0.1 M H3PO4–NaH2PO4 buffer solution of pH 2.5. The peak results from a 2-electron transfer of FA, and the standard potential of FA is estimated to be 0.79 V (vs. SCE). The parameters affecting the response of FA, such as solution pH, accumulation time, accumulation potential, and amount of MWNTs are optimized for the determination of FA. Under the optimum conditions, the peak current changes linearly with FA concentration in the range from 2.0 × 10−8 M to 1.0 × 10−6 M. This method has been applied to the determination of FA in drug tablets, and the recovery is 93.9–96.9%. In addition, the influence of some coexistent species is examined. When a Nafion layer is introduced on the gold electrode before deposition of MWNTs, the resulting composite electrode can give better response to FA. At the same time, the interference by some foreign species is suppressed to some extent.  相似文献   

16.
A method for the fabrication of ion-selective all-solid-state microelectrodes is presented. The ion-to-electron transduction process takes place into the transducer material. In this approach, AgI-Ag2O-V2O5 glasses, which exhibit ionic and electrical conductivity are applied as ion-to-electron transducers of polymeric membrane microelectrodes. All-solid-state electrodes based on potassium-sensitive poly(vinyl chloride) membranes, deposited directly on the surface of glass composites, exhibited theoretical responses. Their selectivity and durability were comparable to planar microelectrodes containing an internal electrolyte immobilized in the intermediate hydrogel layer. The only disadvantage of the proposed structures was their limited reproducibility. Moreover, it was found that the unmodified AgI-Ag2O-V2O5 glasses can be applied as ion-sensitive membrane of solid-state microelectrodes for the determination of Ag+ and I ions.  相似文献   

17.
A novel concept for all-plastic and all-solid-state ion-selective electrodes (ISEs) is introduced. Planar, flexible ion-selective electrodes, comprising only polymeric materials, with no internal solution, were obtained. The cast conducting polymer layer (obtained from aqueous suspension) was covered with a solvent polymeric based membrane to obtain a planar all-plastic sensor. The conducting polymer layer served both as electrical contact and as ion-to-electron transducer. To illustrate this concept, the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) ions (PEDOT-PSS, Baytron P) was chosen. Due to interaction, analyte cations-poly(4-styrenesulfonate) anions, an extended linear range of potentiometric responses was obtained, with lowered detection limit.As example, Ca2+-selective and K+-selective all-plastic electrodes were fabricated and yielded with high selectivity, near Nernstian slopes and fast responses. The detection limits obtained for Ca2+- and K+-selective sensors were 5 × 10−9 M CaCl2 and 4.4 × 10−7 M KCl, respectively.The possibilities of modifying the conducting polymer-phase composition is highlighted. This method is extremely useful to tune the desired type of responses, and cannot be directly applied for electrochemically deposited conducting polymers.  相似文献   

18.
Solid-contact Pb2+-selective electrodes (Pb2+-ISEs) were prepared by using polybenzopyrene doped with eriochrome black T as solid contact material and a conventional polyvinyl chloride membrane with lead ionophore IV as selective compound. Nernstian response down to 10?9?mol?dm?3 Pb2+ was obtained by careful control of the electrode conditioning process. Furthermore, the response at lowest concentrations was retained by exposing the solid-contact Pb2+-ISEs to a solution containing Na2EDTA. Finally, the solid-contact Pb2+-ISEs were used in the determination of lead in a synthetic sample (pPb2+?=?7.40). The analysis of the sample was done with direct potentiometry (pPb2+?=?7.64?±?0.11) and single standard addition method (pPb2+?=?7.27?±?0.07). These results were in good agreement with those obtained by inductively coupled plasma–mass spectrometry (pPb?=?7.34). The renewable response of the Pb2+-ISEs at low concentrations opens interesting possibilities when dealing with trace-level measurements of Pb2+.  相似文献   

19.
Three platinum(II) complexes were synthesized and studied to characterize their ability as an anion carrier in a PVC membrane electrode. The polymeric membrane electrodes (PME) and also coated glassy carbon electrodes (CGCE) prepared with one of these complexes showed excellent response characteristics to perchlorate ions. The electrodes exhibited Nernstian responses to ClO4 ions over a wide concentration range from 1.5 × 10−6 to 2.7 × 10−1M for PME and 5.0 × 10−7 to 1.9 × 10−1M for CGCE with low detection limits (9.0 × 10−7M for PME and 4.0 × 10−7M for CGCE). The electrodes possess fast response time, satisfactory reproducibility, appropriate lifetime and, most importantly, good selectivity toward ClO4 relative to a variety of other common anions. The potentiometric response of the electrodes is independent of the pH of the test solution in the pH range 2.0–9.0. The proposed sensors were used in potentiometric determination of perchlorate ions in mineral water and urine samples. Correspondence: Ahmad Soleymanpour, Department of Chemistry, Damghan Basic Science University, Damghan, Iran.  相似文献   

20.
A new polystyrene based membrane electrode of methyl substituted 6,7:13,14-dibenzo-2,4,9,11-tetraphenyl-1,5,8,12-tetraazacyclotetradeca-1,4,6,8,11,13-hexaene (I) with sodium tetraphenylborate (NaTPB) and dibutyl phthalate (DBP) as anion excluder and plasticizing agent was prepared and investigated as Hg (II)-selective electrode. The electrode exhibits a Nernstian response for Hg (II) ions over a wide concentration range of 1.0 × 10−1–8.9 × 10−6 M with a slope of 30 ± 1 mV per decade concentration. It has a response time of 10 s and can be used for at least 4 months without any divergence in potentials. The membrane works satisfactorily in a partially non-aqueous medium up to a maximum 30% (v/v) content of methanol and ethanol. The proposed sensor revealed good selectivity over a wide variety of other cations including alkali, alkaline earth, heavy and transition metal ions and could be used in a pH range of 2.5–5.0. Normal interferents like Ag+, Cd2+ and Pb2+ low interfere in the working of the electrode. The electrode was successfully used in the direct determination of Hg2+ in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号