首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maryam Ebrahimi 《Surface science》2009,603(9):1203-5808
Competition between the CC functional group with the OH group in allyl alcohol and with the CO group in allyl aldehyde in the adsorption and thermal chemistry on Si(1 0 0)2×1 has been studied by X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD), as well as density-functional theory (DFT) calculations. The similarities found in the C 1s and O 1s spectra for both molecules indicate that the O-H dissociation product for allyl alcohol and [2 + 2] CO cycloaddition product for allyl aldehyde are preferred over the corresponding [2 + 2] CC cycloaddition products. Temperature-dependent XPS and TPD studies further show that thermal evolution of these molecules gives rise to the formation of ethylene, acetylene, and propene on Si(1 0 0)2×1, with additional CO evolution only from allyl alcohol. The formation of these desorption products also supports that the [2 + 2] CC cycloaddition reaction does not occur. In addition, the formation of SiC at 1090 K is observed for both allyl alcohol and allyl aldehyde. We propose plausible surface-mediated reaction pathways for the formation of these thermal evolution products. The present work illustrates the crucial role of the Si(1 0 0)2×1 surface in selective reactions of the Si dimers with the O−H group in allyl alcohol and with the CO group in allyl aldehyde over the CC functional group common to both molecules.  相似文献   

2.
Hai Hua Tang 《Surface science》2007,601(16):3293-3302
The interaction of ethyl vinyl ketone (EVK) with Si(1 1 1)-7 × 7 has been investigated using high-resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. The disappearance of both stretching vibrations of CH2 (3099 cm−1) and CO (1684 cm−1) coupled with the appearance of new CC stretching mode (1660 cm−1) in the HREELS spectra of chemisorbed EVK clearly demonstrates the direct involvement of conjugated CC and CO bonds to form a SiC1H2C2HC3(C4H2C5H3)OSi surface species via [4 + 2]-like cycloaddition in a highly selective manner. In addition, XPS studies show that the C1s binding energies of C1/C2 and C3 upon chemisorption display chemical downshifts of 0.8 eV and 2.2 eV, respectively, further confirming the proposed [4 + 2]-like cycloaddition reaction for the EVK/Si(1 1 1)-7 × 7 system. DFT theoretical calculations suggest that the proposed [4 + 2]-like cycloadduct is thermodynamically most favorable.  相似文献   

3.
4.
The adsorption of acetonitrile on the Si(0 0 1) surface has been investigated using X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). XPS and FTIR spectra indicate that adsorbed acetonitrile forms two correlated binding configurations, a CN species with a strong FTIR absorption at 1540 cm−1 and a CCN (ketenimine) species that has a very strong FTIR absorption at 1952 cm−1. The CCN FTIR peak at 1952 cm−1 shows a striking polarization dependence, with the infrared transition dipole almost entirely in the plane of the sample and parallel to the SiSi dimer axis. Our data suggests that the primary CCN structure results from cleavage of two C-H bonds, forming a structure in which the N and terminal C atom are both linked to the surface. Temperature-dependent experiments help to elucidate the complicated reaction mechanism for acetonitrile adsorbing onto the Si(0 0 1) surface. Dosing at higher temperature increases the amount of CCN relative to CN species while heating leads to direct transformation of the CN to the CCN species. Our results indicate that previous studies, which considered only products formed by cleavage of a single C-H bond, have misidentified the primary ketenimine product. A reinterpretation of the earlier results, combined with data presented here, sheds new light onto the products and mechanism of interaction of acetonitrile with Si(0 0 1).  相似文献   

5.
Chemisorption of 1,1-dichloroethene (Cl2CCH2) to a Si(1 1 1)-7 × 7 surface was studied by means of X-ray photoelectron spectroscopy using synchrotron radiation, recording chlorine 2p and carbon 1s spectra. For carbon 1s, spectral assignment of the chemisorbed species is based on quantum chemical calculations of chemical shifts in model compounds.The results confirm the identity of covalently bonded 1-chlorovinyl (-CClCH2) and vinylidene (CCH2) adspecies. Upon chemisorption at room temperature it was found that about one-third of the molecules break one C-Cl bond while about two-thirds of the adsorbates break two C-Cl bonds. We do not, however, find evidence for isomerization of CCH2 to di-bonded vinylene (-CHCH-).  相似文献   

6.
Hiroyuki Kizaki 《Surface science》2007,601(18):3956-3960
Photon stimulated ion desorption (PSID) from methyl ester terminated self-assembled monolayer (MHDA-SAM, HS(CH2)15COOCH3) and methyl mercaptoacetate (MA, HSCH2COOCH3) on Ag has been investigated using soft X-ray in the C and O K-edge regions. In MHDA-SAM on Ag, site-selective ion desorption has been clearly observed at resonant core excitations of C1s, O1s(OCH3) → σ(OCH3) and O1s(OCH3) → σ(COCH3). Ion intensity in MA on Ag is obviously reduced for (n = 1-3) at C1s, O1s(OCH3) → σ(OCH3) excitations, and no site-selective reaction at O1s(OCH3) → σ(COCH3) excitations has been observed. These reactions may be influenced by configurational difference of reactive sites. It is suggested that surface effects on the selective reaction due to positioning methyl ester group near the surface plays an important role.  相似文献   

7.
X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (<2 eV) argon ion plasma surface modification of TiO2 thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO2 in a two-stage hybrid system had increased the proportion of surface states of TiO2 as Ti3+. The proportion of carbon atoms as alcohol/ether (COX) was decreased with increase the RF power and carbon atoms as carbonyl (CO) functionality had increased for low RF power treatment. The proportion of C(O)OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO2 surfaces whereas small-localised cell free area can be seen on plasma treated TiO2 surfaces which may be due to decrease in C(O)OX, increase in CO and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO2 surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO2 was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry.  相似文献   

8.
The microstructural and optical analysis of Si layers emitting blue luminescence at about 431 nm is reported. These structures have been synthesized by C+ ion implantation and high-temperature annealing in hydrogen atmosphere and electrochemical etching sequentially. With the increasing etching time, the intensity of the blue peak increases at first, decreases then and is substituted by a new red peak at 716 nm at last, which shows characteristics of the emission of porous silicon. CO compounds are induced during C+ implantation and nanometer silicon with embedded structure is formed during annealing, which contributes to the blue emission. The possible mechanism of photoluminescence is presented.  相似文献   

9.
The tetrahedral amorphous carbon (ta-C) films with more than 80% sp3 fraction firstly were deposited by filtered cathode vacuum arc (FCVA) technique. Then the energetic nitrogen (N) ion was used to bombard the ta-C films to fabricate nitrogenated tetrahedral amorphous carbon (ta-C:N) films. The composition and structure of the films were analyzed by visible Raman spectrum and X-ray photoelectron spectroscopy (XPS). The result shows that the bombardment of energetic nitrogen ions can induce the formation of CN bonds, the conversion of C-C bonds to CC bonds, and the increase of size of sp2 cluster. The CN bonds are made of CN bonds and C-N bonds. The content of CN bonds increases with the increment of N ion bombardment energy, but the content of C-N bonds is inversely proportional to the increment of nitrogen ion energy. In addition, C≡N bonds are not existed in the films. By the investigation of AFM (atom force microscopy), the RMS (root mean square) of surface roughness of the ta-C film is about 0.21 nm. When the bombarding energy of N ion is 1000 eV, the RMS of surface roughness of the ta-C:N film decreases from 0.21 to 0.18 nm. But along with the increment of the N ion energy ranging from 1400 to 2200 eV again, the RMS of surface roughness of the ta-C:N film increases from 0.19 to 0.33 nm.  相似文献   

10.
The Pt-Ni catalysts supported on CNTs have been prepared by wet impregnation and the selective hydrogenation of cinnamaldehyde (CMA) to the corresponding hydrocinnamaldehyde (HCMA) over the catalysts has been studied in ethanol at different reaction conditions. The results show that Pt-0.34 wt% Ni/CNTs catalyst exhibits the highest activity and selectivity at a reaction temperature of 70 °C under a pressure of around 2.0 MPa, and 98.6% for the conversion of CMA and 88.2% for the selectivity of CMA to HCMA, respectively. The selective hydrogenation for the CC bond in CMA would be improved as increasing the reaction temperature, and the hydrogenation for the CO bond in CMA is enhanced as increasing the H2 pressure. In addition, these catalysts have also been characterized using TEM-EDS, XPS, H2-TPR and H2-TPD techniques. The results show that Pt particles are dispersed more homogeneously on the outer surface of the nanotubes, while the strong interaction between Pt and Ni would improve the increasing of activated hydrogen number because of the hydrogen spillover from reduced Pt0 onto CNTs and increase the catalytic activity and selectivity of CMA to HCMA.  相似文献   

11.
NEXAFS data [S. Rangan et al., Phys. Rev. B 71 (2005) 165319] and FTIR data [M.P. Schwartz, R.J. Hamers, Surf. Sci. 601 (2007) 945] apparently do not converge in the identification of the reaction products of acetonitrile (CH3CN) with Si(0 0 1)-2 × 1 at room temperature. Using DFT calculations of core-excited/core-ionized spectra and of IR vibrational frequencies and intensities, we show the consistency of the body of experimental data. Three species are present on the surface in equivalent amounts, a CN moiety, a pendent CN and a CCN ketenimine submitted to a strong twist imposed by the Si bond directionality. More generally, the paper shows the usefulness of spectroscopic data simulations in the elucidation of complex surface chemistry problems.  相似文献   

12.
Yan Li 《Applied Surface Science》2008,254(9):2609-2614
The Pt-Co catalysts supported on carbon nanotubes (CNTs) have been prepared by wet impregnation and the selective hydrogenation of cinnamaldehyde (CMA) to the corresponding cinnamyl alcohol (CMO) over the catalysts has been studied in ethanol at different reaction conditions. The results show that Pt-0.17 wt%Co/CNTs catalyst exhibits the highest activity and selectivity at a reaction temperature of 60 °C under a pressure of around 2.5 MPa, and 92.4% for the conversion of CMA and 93.6% for the selectivity of CMA to CMO, respectively. The selective hydrogenation for the CO double bond in CMA would be improved as increasing the H2 pressure, and the selective hydrogenation for the CC double bond in CMA is enhanced as increasing the reaction temperature. In addition, these catalysts have also been characterized using transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR) and H2-temperature programmed desorption (H2-TPD) techniques. The results show that Pt particles are dispersed more homogeneously on the outer surface of the nanotubes, while the strong interaction between Pt and Co would improve the increasing of activated hydrogen number because of the hydrogen spillover from reduced Pt0 onto CNTs and increase the catalytic activity and selectivity of CMA to CMO.  相似文献   

13.
Multi-walled carbon nanotubes were exposed either to nitric acid or to an oxygen plasma to synthesize oxygen-containing functional groups which were characterized by high-resolution X-ray photoelectron spectroscopy (XPS). The C 1s spectra revealed that the treatment with nitric acid mainly resulted in the formation of carboxylic (COOR) and phenolic (COR) groups, whereas the plasma treatment led to a higher amount of carbonyl (CO) groups. Furthermore, the nitric acid treatment yielded a 60% higher surface oxygen concentration compared to the plasma treatment, and created a minor amount of nitrogen-containing functional groups. Thus, the nitric acid treatment was found to be more effective in creating acidic functional groups. The presence and the thermal stability of these groups was also investigated by temperature-programmed desorption (TPD). The release of carbon dioxide was detected at about 350 and 450 °C, indicating the decomposition of COOR groups. The CO groups were more stable decomposing even above 600 °C. In addition, ammonia was adsorbed as probe molecule followed by TPD to derive the amount and the acidity of the carboxylic and phenolic groups.  相似文献   

14.
Nitrogen ions were implanted into SiC ceramics by using ion implantation technology (N+-SiC). The surface structure and chemical bonds of N+-SiC ceramics were determined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and their nanohardness was measured by nanoindenter. The friction and wear properties of the N+-SiC/SiC tribo-pairs were investigated and compared with those of SiC/SiC tribo-pairs in water using ball-on-disk tribo-meters. The wear tracks on the N+-SiC ceramics were observed by non-contact surface profilometer and scanning electron microscope (SEM) and their wear volumes were determined by non-contact surface profilometer. The results show that the N+-SiC ceramics were mainly composed of SiC and SiCN phase and SiN, CC, CN and CN bonds were formed in the implantation layer. The highest hardness of 22.3 GPa was obtained as the N+-SiC ceramics implanted at 50 keV and 1 × 1017 ions/cm2. With an increase in nitrogen ion fluence, the running-in period of N+-SiC/SiC tribo-pairs decreased, and the mean stable friction coefficient decreased from 0.049 to 0.024. The N+-SiC ceramics implanted at 50 keV and 5 × 1017 ions/cm2 exhibited the excellent tribological properties in water. In comparison of SiC/SiC ceramic tribo-pairs, the lower friction coefficient and lower wear rate for the N+-SiC/SiC tribo-pairs were acquired.  相似文献   

15.
The quadratic, cubic and semi-diagonal quartic force field of nitric acid has been calculated at the CCSD(T) level of theory employing a basis set of triple-ζ quality. A semi-experimental equilibrium structure has been derived from experimental ground state rotational constants and rovibrational interaction parameters calculated from the ab initio force field. It is found that the A and B semi-experimental equilibrium rotational constants of the 18O isotopologues (for which the rotation of principal axes is large) cannot be accurately reproduced. This problem is discussed and a remedy is proposed. Finally, the semi-experimental structure is in agreement with the ab initio structure calculated at the CCSD(T) level of theory using a basis set of at least quadruple-ζ quality and a core correlation correction, except for the long NO single bond for which the CCSD(T) value is too short due to inadequate treatment of electron correlation. The empirical structures are also determined and their accuracy is discussed. The best equilibrium structure is: re(NOsyn) = 1.209(1) Å, re(NOanti) = 1.194(1) Å, re(NO) = 1.397(1) Å, re(OH) = 0.968(1) Å, (ONOsyn) = 115.8(1)°, (ONOanti) = 114.2(1)° and (NOH) = 102.2(1)°.  相似文献   

16.
Acetonitrile (CH3CN) adsorbs on Si(0 0 1)-2 × 1 at room temperature under two forms, a cycloaddition-like adduct (Si-CN-Si) and a pendent cyano (Si-CH2-CN) resulting from the decomposition of the molecule. Resonant Auger spectroscopy has been used to study the excited-state-dependent electron transfer from the N 1s core-excited molecular adsorbate to the silicon substrate, using the core-hole lifetime (∼6 fs) as an internal clock. It is shown that the πCN NEXAFS state lies within the silicon bandgap because of a core-excitonic effect. Therefore no charge transfer of the excited electron to the substrate is observed. On the other hand the πCN NEXAFS state is placed within the silicon conduction band. Excitation to this orbital leads to valence/Auger spectra in which both resonant and normal Auger contributions are observed. Therefore there is evidence for a charge transfer from the pendent CN to the silicon surface, on a timescale estimated to tens of femtoseconds.  相似文献   

17.
Poly(propylene carbonate) (PPC) was implanted by oxygen ion with energy of 40 keV. The influence of experimental parameters was investigated by varying ion fluence from 1 × 1012 to 1 × 1015 ions/cm2. XPS, SEM, surface roughness, wettability, hardness, and modulus were employed to investigate structure and properties of the as-implanted PPC samples. Eight chemical groups, i.e., carbon, CH, COC, CO, OCO, CO, , and groups were observed on surfaces of the as-implanted samples. The species and relative intensities of the chemical groups changed with increasing ion fluence. SEM images displayed that irradiation damage was related strongly with ion fluence. Both surface-recovering and shrunken behavior were observed on surface of the PPC sample implanted with fluence of 1 × 1015 ions/cm2. As increasing ion fluence, the surface roughness of the as-implanted PPC samples increased firstly, reached the maximum value of 159 nm, and finally decreased down the minimum value. The water droplet contact angle of the as-implanted PPC samples changed gradually with fluence, and reached the minimum value of 70° with fluence of 1 × 1015 ions/cm2. The hardness and modulus of the as-implanted PPC samples increased with increasing ion fluence, and reached their corresponding maximum values with fluence of 1 × 1015 ions/cm2. The experimental results revealed that oxygen ion fluence closely affected surface chemical group, morphology, surface roughness, wettability, and mechanical properties of the as-implanted PPC samples.  相似文献   

18.
The improved interfacial adhesion of PBO fiber-reinforced bismaleimide composite by oxygen plasma processing was investigated in this paper. After treatment, the maximum value of interlaminar shear strength was 57.5 MPa, with an increase of 28.9%. The oxygen concentration of the fiber surface increased, as did the surface roughness, resulting in improvement of the surface wettability. The cleavage and rearrangement of surface bonds created new functional groups OCO, NCO and NO, thereby activating the fiber surface. And long-time treatment increased the reaction degree of surface groups while destroyed the newly-created physical structures. The enhancement of adhesion relied primarily on the strengthening of chemical bonding and mechanical interlocking between the fiber and the matrix. The composite rupture planes indicated that the fracture failure shifted from the interface to the matrix or the fiber.  相似文献   

19.
Magnesium oxide (MgO) nano-size powder is synthesized using magnesium nitrate hexahydrate and oxalic acid as precursors with ethanol as a solvent. The process involves gel formation, drying at 100 °C for 24 h to form magnesium oxalate dihydrate [α-MgC2O4·2H2O] and its decomposition at 500, 600, 800, and 1000 °C for 2 h to yield MgO powder (average crystallite size ∼6.5-73.5 nm). The sol-gel products at various stages of synthesis are characterized for their thermal behaviour, phase, microstructure, optical absorption, and presence of hydroxyl and other groups like OCO, CO, C-C, etc. MgO powder is shown to possess an f.c.c. (NaCl-type) structure with lattice parameter increasing with decrease in crystallite size (tav); typical value being ∼4.222(2) Å for tav∼6.5 nm as against the bulk value of 4.211 Å. Infrared absorption has shown MgO to be highly reactive with water. Also, a variety of F- and M-defect centres found in MgO produce energy levels within the band gap (7.8 eV), which make it attractive for application in plasma displays for increasing secondary electron emission and reducing flickering effects. The possible application of the intermediate sol-gel products, viz., α-MgC2O4·2H2O and anhydrous magnesium oxalate (MgC2O4) in understanding the plants and ESR dosimetry, respectively, has also been suggested.  相似文献   

20.
The influence of long-distance oxygen plasma sterilization on surface properties of substrate material, i.e., medical poly(tetrafluoroethylene) (PTFE), and aging effect of these sterilized PTFE film surfaces were investigated by contact angle measurement, mass loss determination, scanning electron microscopy (SEM) as well as bacterial adhesion and platelet adhesion measurements in vitro, respectively. The changes in chemical structure of sterilized PTFE film were followed using X-ray photoelectron spectroscopy (XPS). As a result of plasma sterilization oxygen-containing functional groups (such as CO and CO), especially the CO group are introduced into PTFE surfaces, and thus pronounced increases of surface free energy and surface wettability are presented when the sample positions are within 0-40 cm. The film surface wettability degrades little as the aging time continued as long as 190 days. At the same time, the minimal surface degradation and damage occur on the sterilized PTFE when the sample position is at 40 cm. Moreover, the antibacterial adhesion and blood compatibility of sterilized PTFE surface are enhanced and the optimal effects are also obtained at 40 cm. The essential reason may be due to the optimal equilibrium between surface wettability and surface damage, which is achieved at 40 cm. Overall, of the surface properties of long-distance oxygen plasma sterilized PTFE analyzed, the sterilization at 40 cm is optimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号