首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
The heterogeneous character of thin gold films prepared by thermal evaporation and the dependence of this heterogeneity on the rate of their deposition must be considered when exploiting their optical properties for biosensor purposes. For instance, the performance of thin gold films for surface plasmon resonance (SPR) biosensors may drastically be degraded if care is not taken to prepare a film with a high fraction of gold (>95%). We use three different models to interpret the SPR response of gold films prepared by thermal evaporation. We show that the interpretation of the SPR curves requires considering both a global heterogeneity of the gold films and a surface roughness. Our conclusions are further corroborated by scanning surface plasmon microscope (SSPM) images of these thin gold films.  相似文献   

2.
Metal films containing silver and gold layers having different thicknesses were evaporated on glass substrates. Two-beam interference technique was applied to irradiate the surfaces by the fourth harmonic of a pulsed mode Nd:YAG laser. The atomic force microscopical study showed that surface relief grating having a period of 900 nm corresponding to the interference pattern was developed on the metallic films. The modulation amplitude of the laser-induced gratings was increasable by enhancing the number of laser pulses at constant fluence, and a groove depth commensurable with the film thicknesses was generated at the average fluence of 39.5 mJ/cm2 on bimetallic layers. The surface structure was more regular, and the modulation amplitude was larger in case of bimetallic films containing thicker gold layers. The threshold fluences of the phase transitions were determined by numerical temperature model calculations for different metal layer compositions, and a good agreement was found between the calculated and experimentally observed threshold values. The division of the metal stripes into droplets and the development of holes were explained by the melting of the entire metal layers and by the vaporization of silver at higher fluences. The angle-dependent surface plasmon resonance spectroscopy realized in Kretschmann arrangement proved that the laser-induced grating formation was accompanied by the change in the optical thickness and by the modification of the structure of the bimetallic films. Broad side wings appeared on the resonance curves caused by grating-coupling in case of appropriate rotation angle and sufficiently large modulation depth of the grating's grooves, according to our calculations. The coupling on deep gratings developed on bimetallic films containing the thinnest gold layer and on monometallic silver films resulted in separated secondary resonance minimum development. The periodic adherence of native streptavidin on the metallic gratings was detected by tapping mode AFM, and based on the shift of the secondary resonance peak.  相似文献   

3.
Adriana Rueda 《Surface science》2009,603(3):491-3317
Evaporated gold films have a smooth interface with their substrate and a rougher top surface. We investigate the optical response of such a film by excitation of surface plasmons both on the rough and on the smooth side. The smooth side, although polycrystalline, has an optical response that is very similar to a monocrystalline surface. The film can be modeled as two-layers with significantly different optical constants. For investigations on thin dielectric films though, this heterogeneity introduces only a negligible error.  相似文献   

4.
Yinghui Yu  Enge Wang 《Surface science》2006,600(22):4966-4971
The collective excitation in Al films deposited on Si(1 1 1)-7 × 7 surface was investigated by high-resolution electron-energy-loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). At the Al film thickness d < 10 ML, the surface plasmon of Al film has only a small contribution to the observed energy-loss peaks in the long wavelength limit (q≈0), while its contribution becomes significant for q>d-1. More interestingly, for thin Al films, the initial slope of the surface plasmon dispersion curve is positive at q0, in a sharp contrast to bulk Al surface where the energy dispersion is negative. These observations may be explained based on the screening interaction of the space charge region at the Al-Si interface.  相似文献   

5.
Effects of the annealing temperature on structural, optical and surface properties of chemically deposited cadmium zinc sulfide (CdZnS) films were investigated. X-ray diffraction (XRD) results showed that the grown CdZnS thin films formed were polycrystalline with hexagonal structure. Atomic force microscopy (AFM) studies showed that the surface roughness of the CdZnS thin films was about 60-400 nm. Grain sizes of the CdZnS thin films varied between 70 and 300 nm as a function of annealing temperature. The root mean square surface roughness of the selected area, particular point, average roughness profile, topographical area of roughness were measured using the reported AFM software. The band gaps of CdZnS thin films were determined from absorbance measurements in the visible range as 300 nm and 1100 nm, respectively, using Tauc theory.  相似文献   

6.
Zirconium doped zinc oxide thin films with enhanced optical transparency were prepared on Corning 1737 glass substrates at the substrate temperature of 400 °C by spray pyrolysis method for various doping concentrations of zirconium (IV) chloride in the spray solution. The X-ray diffraction studies reveal that the films exhibit hexagonal crystal structure with polycrystalline grains oriented along (0 0 2) direction. The crystalline quality of the films is found to be deteriorating with the increase of doping concentration and acquires amorphous state for higher concentration of 8 at.% in precursor solution. The average transmittance for 5 at.% (solution) zirconium doped ZnO film is significantly increased to ∼92% in the visible region of 500-800 nm. The room temperature photoluminescence (PL) spectra of films show a band edge between 3.41 and 3.2 eV and strong blue emission at 2.8 eV irrespective of doping concentration and however intensity increases consistently with doping levels. The vacuum annealing at 400 °C reduced the resistivity of the films significantly due to the coalescence of grains and the lowest resistivity of 2 × 10−3 Ω cm is observed for 3 at.% (solution) Zr doped ZnO films which envisages that it is a good candidate for stable TCO material.  相似文献   

7.
The pulsed laser deposition technique was used to produce zinc oxide thin films onto silicon and Corning glass substrates. Homogeneous surfaces exhibiting quite small Root Mean Square (RMS) roughness, consisting of shaped grains were obtained, their grain diameters being 40-90 nm at room temperature and at 650 °C growth respectively. Films were polycrystalline, even for growth at room temperature, with preferential crystallite orientation the (0 0 2) basal plane of wurtzite ZnO. Temperature increase caused evolution from grain to grain agglomeration structures, improving crystallinity. Compressive to tensile stresses transition with temperature was found while the lattice constant decreased.  相似文献   

8.
A series of hydrogenated amorphous carbon (a-C:H) films were deposited on silicon substrates by microwave plasma chemical vapor deposition technique with a mixture of hydrogen and acetylene. The effects of flow ratio of hydrogen to acetylene on surface morphology and structure of a-C:H films were investigated using surface-enhanced Raman spectroscopy and scanning probe microscope (SPM) in the tapping AFM mode. Raman data imply a transition from graphite-like phase to diamond-like bonding configurations when the flow ratio increases. AFM measurements show that the increase in hydrogen content, to some extent, can smoothen the surface morphology and decrease the RMS roughness. Excessive hydrogen is found to cause the formation of polymeric hydrocarbon clusters in the films and reduce deposition rate.  相似文献   

9.
This research investigates the effect of ion implantation dosage level and further thermal treatment on the physical characteristics of chromium coatings on Si(1 1 1) substrates. Chromium films had been exposed to nitrogen ion fluencies of 1 × 1017, 3 × 1017, 6 × 1017 and 10 × 1017 N+ cm−2 with a 15 keV energy level. Obtained samples had been heat treated at 450 °C at a pressure of 2 × 10−2 Torr in an argon atmosphere for 30 h. Atomic force microscopy (AFM) images showed significant increase in surface roughness as a result of nitrogen ion fluence increase. Secondary ion mass spectroscopy (SIMS) studies revealed a clear increased accumulation of Cr2N phase near the surface as a result of higher N+ fluence. XRD patterns showed preferred growth of [0 0 2] and [1 1 1] planes of Cr2N phase as a result of higher ion implantation fluence. These results had been explained based on the nucleation-growth of Cr2N phase and nitrogen atoms diffusion history during the thermal treatment process.  相似文献   

10.
Solid-like structures formed on the graphite basal surface following the liquid-phase adsorption of n-octylamine have been studied using tapping-mode atomic force microscopy. Following deposition of a 1 μl droplet and subsequent annealing at 100°C, the amine formed randomly distributed islands categorised into two types based upon the morphology at the vapour interface. Evidence was found for the parallel orientation of the molecular axis at the basal plane, the orientation anticipated from studies of other aliphatic molecules. The results suggest the formation of vertically oriented molecular clusters at the vapour interface. Similarities were found with previous results of the adsorption of n-alkanes at the basal surface, highlighting the importance of n-alkyl chain interactions. Similarities and differences were observed between amine and alkane behaviour at the graphite steps. Annealing at 200°C reduced the island coverage, particularly at steps, and at 300°C no decoration was observed on the surface. The activation energy for surface diffusion and the energy difference between surface and vapour molecules are estimated. Upon deposition of a 5 μl droplet of amine onto graphite, an aggregate morphology decorated terraces and steps. Measurements suggest that the aggregate surface consisted of molecular clusters oriented towards the surface normal.  相似文献   

11.
The homogeneity of a self-assembled monolayer (SAM) on a surface is an important parameter which affects the ability of a SAM to fulfill its intended function. As an example, SAMs formed from octanethiols can form an impermeable surface, while SAMs based on a bifunctional coupling reagent can form a surface with uniform reactivity. Exposure of gold nanoparticles or gold surfaces to solutions of dithiobis (succinimidylpropionate) (DSP) gives rise to a surface which can react with DNA. Atomic force microscopy, UV-vis and gel electrophoresis experiments indicate that a self-assembled monolayer of DSP on gold nanoparticles can attenuate aggregation, inhibit the “lying down” of covalently-bound single-stranded (ss) DNA and promote more efficient hybridization. The determination of the point of aggregation after reacting DSP with colloidal gold yields 2.86 × 10−10 mol/cm2 or 42% of the value determined from molecular modeling. Cyclic voltammetry experiments validate that DSP on a gold quartz crystal (6.3 × 10−10 mol/cm2) forms a fairly uniform SAM that is within 94% of maximum coverage when compared with results obtained from molecular modeling (6.67 × 10−10 mol/cm2). Surface plasmon resonance experiments indicate that the reaction of a DSP coated gold surface with (ss) DNA yields 2.4 × 10−12 mol/cm2 or reaction with about 1% of the available surface area. Subsequent reactions of the DSP surface with the filler, n-boc-1,4-phenylene diamine (n-boc), yield a total surface coverage of 1.8 × 10−11 mol/cm2. The surrounded (ss) DNA yields a surface with 97% hybridization efficiency toward the complement.  相似文献   

12.
孙中华  王红艳  王辉  张志东  张中月 《物理学报》2012,61(12):125202-125202
采用离散偶极子近似方法系统地研究了金纳米环双体的消光光谱及其电场分布. 计算结果表明, 金纳米环双体在耦合作用下的共振消光峰对应着不同振动模式, 改变金纳米环双体的排列方式、 间距和尺寸大小, 其表面等离子体共振消光峰发生红移或蓝移. 因此可以通过对金纳米环双体结构参数和排列方式的设定, 调节其表面等离子体共振消光峰的位置. 电场分布表明, 水平排列的金纳米环双体较单个金纳米环产生更强的局部表面增强电场. 适当的小间距, 较大的内外半径的金纳米环水平阵列更适合做表面增强拉曼散射的衬底, 在生物分子检测等领域具有潜在的应用.  相似文献   

13.
A criterion is developed to predict the resulting evolution process of the following surface defects on thin (17 nm) polystyrene (PS) films on silicon (Si): (i) nanoindentation-induced indents which grow after being heated above the glass transition temperature of PS, Tg, leading to dewetting; (ii) nanoindentation-induced indents which level at temperatures above the Tg, resulting in a flat polymer surface and (iii) indents which are formed and grow spontaneously by thermal treatment above the Tg (thermal film break up). The criterion is based on the concept of the excess surface energy, ΔFγ, which was introduced in previous reports for cases (i) and (ii). Here, a similar energetic term is used which corresponds only to the effect of the depressions, ΔFγ(D). The effect of the rims which surround the depressions in cases (i) and (ii) is not taken into account. Measurements of ΔFγ(D), performed by atomic force microscopy, prior to any treatment above the Tg suggest that growing depressions (cases i and iii) correspond to ΔFγ(D) > 1.5 × 10−16 J while for healing depressions (case ii) ΔFγ(D) < 1.8 × 10−16 J. A critical region of ΔFγ(D) exists from 1.5 × 10−16 J to 1.8 × 10−16 J. Depressions which correspond to this, rather short, region can either grow or heal.  相似文献   

14.
In this work, we investigated the effect of water-vapor treatment on the surface morphology of SiO2 and Si3N4 insulators before and after Co60 gamma-ray irradiation by using the atomic force microscopy (AFM) operated under non-contact mode. Before irradiation, no apparent surface morphology change was found in SiO2 samples even they were water vapor treated. However, bright spots were found on post-irradiated water-vapor-treated SiO2 sample surfaces but not on those without water-vapor treatment. We attributed the bright spots to the negative charge accumulation in the oxide due to charge balancing between hydroxyl (OH) ions adsorbed on SiO2 surface and electron-hole pairs (ehps) generated during irradiation since they can be annealed out after low temperature annealing process. On the contrary, no bright spots were observed on post-irradiated Si3N4 samples with and without water-vapor treatment. This result confirms that Si3N4 is a better water-resist passivation layer than SiO2 layer.  相似文献   

15.
Results of experimental studies of the influence of substrate preparation on the surface chemistry and surface morphology of the laser-assisted chemical vapour deposition (L-CVD) SnO2 thin films are presented in this paper. The native Si(1 0 0) substrate cleaned by UHV thermal annealing (TA) as well as thermally oxidized Si(1 0 0) substrate cleaned by ion bombardment (IBA) have been used as the substrates. X-ray photoemission spectroscopy (XPS) has been used for the control of surface chemistry of the substrates as well as of deposited films. Atomic force microscopy (AFM) has been used to control the surface morphology of the L-CVD SnO2 thin films deposited on differently prepared substrates. Our XPS shows that the L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit the same stoichiometry, i.e. ratio [O]/[Sn] = 1.30 as that of the layers deposited on Si(1 0 0) substrate previously cleaned by UHV prolonged heating. AFM shows that L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit evidently increasing rough surface topography with respect to roughness, grain size range and maximum grain height as the L-CVD SnO2 thin films deposited on atomically clean Si substrate at the same surface chemistry (nonstoichiometry) reflect the higher substrate roughness after cleaning with ion bombardment.  相似文献   

16.
We demonstrate a gradual surface modification process of relaxed Si0.5Ge0.5 alloy films by 100 MeV Au beam with fluence varying between 5 × 1010 and 1 × 1012 ions/cm2 at 80 K by means of atomic force microscopy (AFM). Presence of Ge quantum dots (QDs) was found in the virgin sample. The disappearance of the QDs were noticed when the samples were irradiated with a fluence of 5 × 1010 ions/cm2. Craters were found developing at a fluence of 1 × 1011 ions/cm2. Apart from the evolution of the craters, blisters were also detected at a fluence of 1 × 1012 ions/cm2. Variation of the average root mean square value of the surface roughness as a function of fluence was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号