首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
基于波长调制技术的激光器调制特性研究   总被引:1,自引:0,他引:1  
在流场诊断技术中,可调谐半导体吸收光谱技术(TDLAS)成为主要的诊断技术之一,其可实现非接触、原位检测。波长调制(WMS)和直接吸收(DA)是两种最常用的TDLAS气体传感方法,在目标含量很低或者极端流场环境下,波长调制技术呈现出更多的优势,检测灵敏度与直接吸收相比可以提高1~2个数量级。在近红外波长调制技术应用领域,分布反馈式(DFB)半导体激光器成为流场诊断技术的光源选择之一,无论利用谐波信号(或者归一化谐波信号)的线型拟合,还是选择谐波信号的峰值来反演流场参数,吸收模型的准确建立均十分重要。在模型建立时,激光器频率-时间响应以及光强-时间响应的准确表示尤为重要。为解决吸收模型准确建立问题,提出了一种准确测量激光器调制参数的完整方法,通过实验测量了用于探测水汽吸收的1 392和1 469 nm激光器的调制特性,研究了分布反馈式激光器的调制参数随调制幅度,调制频率以及工作温度的变化。根据该方法得到的调制参数,建立吸收模型,测得常温下空气中水汽浓度为1.97%,直接吸收方法测得浓度为1.99%,验证了该测量方法的准确性。研究表明,调制深度随调制幅度的增加线性增加,随调制频率的增加非线性单调减小,随工作温度的升高线性增加;激光器的出光强度和频率同时被调制,强度变化超前频率变化的相位,随调制幅度的变化不明显,随调制频率的增加单调增加,随工作温度的升高单调减小;归一化一次谐波振幅和二次振幅均随调制幅度的增加而增加,随调制频率的增加而减小,随工作温度的变化不明显。在吸收光谱应用领域,波长调制技术发挥的作用愈加重要,调制系数与谐波信号的峰值息息相关,在波长调制技术应用时,选取适当的调制参数,有利于得到合适的谐波信号,可通过改变调制幅度、调制频率、工作温度得到最优调制系数。研究了近红外分布反馈式半导体激光器的调制特性,该方法同样适用于不同封装和不同波段激光器调制特性的研究,利于推广吸收光谱技术在各领域的应用。  相似文献   

2.
使用TDLAS技术进行动态压力测量已经成为压力测量领域的研究热点。波长调制法实验装置较为复杂,需要对多个参数进行设置,选择出最优的预设参数能够取得更好的实验效果,获得更高的测量精度。目前波长调制法的实验参数设置基本凭借个人经验,使用Matlab程序仿真结合波长调制法的TDLAS测量技术,能够对实验中需要进行预设的重要参数进行了分析。通过计算4990cm-1波段和6330cm-1波段附近的多条吸收峰,发现4990.09cm-1波段处的吸收峰更适合作为波长调制法的测量波段。以4990.09cm-1处的吸收峰为研究对象,进行了波长调制法压力测量仿真建模,计算了调制度、调谐频率和调制频率对二次谐波幅值和对称性的影响并深入地分析了影响因素,总结了其变化规律。在综合考虑抗噪性能和测量精度的情况下,选择了调制度为2.5,调谐频率30Hz,调制频率5kHz为最佳实验参数。基于Matlab的仿真模型能够快速计算大量参数点,更加直观地分析出对参数的影响趋势,为实验仪器和预设参数的选择提供依据。  相似文献   

3.
曹卫军  成春芝  周效信 《物理学报》2011,60(5):54210-054210
利用分裂算符法求解速度规范下的含时薛定谔方程,研究了一维氦原子处于单色红外场、红外场与紫外场形成的双色组合场中产生的高次谐波谱,分析了在截止位置附近高次谐波的转换效率与激光波长(800—2000 nm)的关系,发现在双色组合场驱动下截止位置附近高次谐波的转换效率随波长的变化为η(λ)∝λ-x,其中〈x〉的数值取决于激光场的强度,但是只要选取合适场强的组合场就能提高截止位置附近高次谐波的转换效率. 关键词: 双色组合场 分裂算符 高次谐波 转换效率  相似文献   

4.
余玮  徐远 《光学学报》1996,16(5):01-604
用电容器模型计算了激光打靶过程中由共振吸收诱发的高效谐波,并在此基础上讨论了超短脉冲强激光的高次谐波作为一种短波长相干辐射源的可能性。  相似文献   

5.
葛愉成 《物理学报》2008,57(7):4091-4098
报告由不同脉冲宽度(半高宽,FWHM)和不同载波-包络相位(CEP,Φ)的激光产生的高次谐波辐射能量输出时间特性即发射特性的研究结果. 计算表明,由宽度为几个周期的激光产生的高次谐波辐射的截止能量明显低于由无限长脉冲宽度激光产生的截止能量ωmax=3.17Up+Ip(其中ωmax为光子角频率,UpIp分别为激光有质动力势和原子的电离能). 例如,由两周期(FWHM),Φ=15°的激光产生的高次谐波辐射的截止能量为ωmax=2.90Up+Ip,此时发射特性单脉冲(即分布单脉冲)具有最大的能量带宽0.86Up. 脉冲中心位置的载波相位和时间宽度分别为0.94rad(弧度)和1.29rad. 而该激光脉冲在Φ=-75°时能产生截止能量为ωmax=2.70Up+Ip,最大能量带宽为0.70Up的双分布脉冲,其中心位置分别为-0.58rad和2.43rad,宽度分别为1.22rad和1.33rad. 随着激光脉冲宽度的增加,分布单脉冲的能量带宽比时间宽度下降得更快. 对于一定宽度的激光脉冲,所产生的分布单脉冲的能量带宽和时间宽度的CEP依赖性显示出180°的周期结构. 利用这个有趣的特点,在实验上可以通过调节CEP来选择分布脉冲的能量参数,也可用来定位和控制阿秒脉冲的时间参数. 理论分析指出,只要选择合适的阿秒X射线能量带宽,CEP不稳定性对于光电子谱和测量结果的影响将大为降低,甚至在最大程度上消除这种影响. 这些研究结果不仅有助于在物理上深入了解高次谐波辐射的动力学过程,而且对于进一步在实验上优化和选择阿秒单脉冲和双脉冲具有重要的参考和指导意义. 关键词: 高次谐波产生 鞍点方法 谐波发射特性 分布脉冲  相似文献   

6.
从电离的几率方程出发,得到了适用于任意激光脉冲宽度下原子的饱和激光强度和最高次光谐波光子能量与各激光参数的关系表达式,并由此给出了产生高次谐波的优化条件。解决了当超短脉冲激光的脉冲宽度小于皮秒时,产生高次谐波(HHG)的隧道电离理论中的Ammosov-Delone-Krainov方法对产生高次谐波的饱和激光强度以及最高次谐波光子能量的估算不可靠的问题。  相似文献   

7.
 从电离的几率方程出发,得到了适用于任意激光脉冲宽度下原子的饱和激光强度和最高次光谐波光子能量与各激光参数的关系表达式,并由此给出了产生高次谐波的优化条件。解决了当超短脉冲激光的脉冲宽度小于皮秒时,产生高次谐波(HHG)的隧道电离理论中的Ammosov-Delone-Krainov方法对产生高次谐波的饱和激光强度以及最高次谐波光子能量的估算不可靠的问题。  相似文献   

8.
通过数值求解强场近似下单电子原子的含时薛定谔方程,研究了在强线偏振激光场下,氢原子电四极矩对高次谐波产生的贡献.研究结果表明,在强激光场的作用下,在偶极矩的影响下氢原子能够产生奇次谐波,当激光场强度增加到一定值时,氢原子在电四极矩的作用下产生了偶次谐波.根据谐波功率谱和时频分析图并结合半经典三步模型分析了偶次高次谐波产生机制,并对产生的物理现象做出了合理的解释.  相似文献   

9.
本文研究了一维模型分子离子(初态为基态和一个激发束缚态叠加的相干态)在超强超短激光脉冲作用下的谐波发射谱.我们发现在高次谐波谱平台区域出现了周期性的结构变化.我们利用小波变换对谐波谱进行了暂态时间频率分析,结果表明该谐波结构产生的原因是由电离电子返回母离子时与不同束缚态复合而产生的谐波光脉冲之间相干叠加.同时采用半经典计算,对所得到的计算结果进行了分析,验证了我们的结论.  相似文献   

10.
本文通过求解薛定谔方程,理论探索了高次谐波及孤立阿秒脉冲在相位调制的单色中红外激光场中的产生.研究结果表明,通过加入含时相位啁啾小量,能够有效的提高高次谐波的产生效率,获得超宽平台谐波谱及超短孤立阿秒脉冲.特别是在相位为0.3π的基础上,同时加入啁啾小量βt,在β=0.3时,可得到带宽为822 e V的超连续高次谐波平台.最后通过叠加第二平台高次谐波,可得到带宽仅为2.7 as的孤立阿秒脉冲.且脉冲强度比没有加入啁啾小量的情况下显著增强.  相似文献   

11.
基于PAS与TDLAS的基本原理,讨论了两者之间的联系,推导了光声信号和TDLAS信号与气压的关系式,设计并构造了一个可以同时进行PAS与TDLAS气体测量的对比装置,并对两者在不同气压条件下的测量结果进行了分析和研究,为不同气压条件下的气体测量技术选择提供了参考。试验研究表明:随着气压上升,光声光谱与TDLAS信号均变大,极限检测灵敏度均提高;随着气压上升,气体吸收能量转化为光声信号的效率变低;在低压时,使用光声光谱进行气体检测具有更好的效果。  相似文献   

12.
双波长双脉冲激光三次谐波的产生方法   总被引:1,自引:0,他引:1  
提出双波长双脉冲激光产生三次谐波的方法。波长不同的两脉冲激光束由反射使它们合拢后通过两块非线性的BBO晶体 ,激光脉冲第一次通过BBO晶体产生两波长的二次谐波 (SHG) ,它们由各自的反射镜反射再次通过BBO又产生了二次谐波 ,这两次产生的二次谐波和基波通过用于产生三次谐波的BBO晶体可产生双波长的三次谐波 ,它们由 45°斜置的耦合镜输出。文中分析了满足二次谐波和三次谐波的四个相位匹配的条件 ,该方法也可用于腔内双波长双脉冲的三次谐波激光的产生 ,给出了相应的实验结果。  相似文献   

13.
利用扫描外腔二极管激光器(ECDL)后镜压电陶瓷(PZT)电压时频率变化和背景能量起伏之间存在相位差的特性,通过矢量锁相放大器将一个探测器探测到的信号成份和背景起伏噪声分开,获得标准的1f~4f信号.如果不存在这个相位差,则无法消除谐波信号背景干扰.这种技术简单、实用,对理论分析谐波信号以及实现高灵敏探测污染气体传感器的小型化都有重要的指导意义.  相似文献   

14.
针对可调谐半导体激光吸收光谱(TDLAS)连续检测技术中,二次谐波背景信号存在漂移的现象,提出改变激光器中心电流实时提取背景信号,以消除连续检测过程中背景信号的漂移对浓度反演的影响。依据波长调制理论推导了二次谐波背景信号的理论表达式,并分析了实际情况下影响二次谐波背景信号的因素。给出激光器在不同工作温度时电流和输出光强度之间的关系曲线,并分析了改变激光器中心电流实时提取背景信号的可行性。结合背景信号搜索方法设计了基于LabVIEW的背景信号提取流程图。设计以氨气为检测对象的TDLAS实验系统,选取了氨气的吸收谱线以及对应的吸收中心电流。在激光器电流全工作区间内只存在唯一吸收峰的情况下,确定实验中各参数的数值及搜索背景的电流范围。实验结果表明:该方法可实时提取谐波背景信号。结合线性最小二乘法拟合反演可有效地减小检测误差及背景信号对浓度反演精度的影响,提高浓度的检测精度及准确性。在连续检测实验中,反演浓度的标准差由2.688 3降到1.856 1,减小背景信号漂移对检测浓度准确性的影响,提高了连续检测的准确性。  相似文献   

15.
WMS的玻璃药瓶内氧气含量检测及其标定方法改进   总被引:1,自引:0,他引:1  
应用激光波长调制光谱(WMS)技术,建立了一种开放光路短光程检测玻璃药瓶内氧气含量的方法。选择氧气分子位于760.885(13 142.58 cm-1)的吸收谱线,通过多次调试优化了系统相关参数,给出了实时扣背景及实时谱线校正等数据处理的方法和步骤。采集七种不同氧气含量的玻璃药瓶样本,获取相应的二次谐波信号,分别建立二次谐波峰值、半高谱峰面积与浓度的线性回归方程进行定量预测。实验结果表明,其拟合系数分别为0.996 6和0.997 8,后者相比前者的标定方法提高了0.12%。采用完全交互验证的方法来评价两个模型的预测精度,其预测的均方根误差(RMSEP)分别是0.003 1和0.002 0,后者相比前者降低了37.69%。对浓度是4%的气体样品,比较不同时间的20次测量结果,标准差分别为0.002 2和0.001 6,后者相比前者降低了27.3%,同时其测量灵敏度分别为0.198%和0.097%,后者相比前者的灵敏度提高了约51%。证明了该系统及数据处理方法对玻璃药瓶内氧气含量检测是可行的,且利用半高谱峰面积更丰富的幅值信息来反演气体浓度可以降低波峰失真影响,检测精度更高,稳定性更好。  相似文献   

16.
高分辨分子吸收光谱中的波长校准方法   总被引:2,自引:0,他引:2  
本文提出高分辨分子吸收光谱中,以碘分子谱作为参考标准的波长校准方法,编制了以人机交互方式自动完成波长校准的软件,并应用于16 422-17 896cm^-1可见光波段范围内的N2^ 分子离子的高分辨吸收谱线的波长校准,结果表明其绝对准确度可达0.006cm^-1。  相似文献   

17.
波前编码成像系统将模拟编码方法与数字解码技术相结合解决景深延拓问题,可以用信息光学的方法进行分析,得到波前编码系统的景深延拓扩展率。但是这种方法使用的景深概念和几何光学的景深概念有所不同。从几何光学角度研究了信息光学导出的波前编码系统的景深延拓扩展率与几何光学景深延拓的关系。最后得出结论,在F数一定的情况下,随着探测器分辨率的提高,几何光学景深延拓扩展率与信息光学给出的波前编码光学系统的景深延拓扩展率趋于一致。  相似文献   

18.
高温高压下电解质溶液谱学研究的进展   总被引:2,自引:0,他引:2  
高温高压下电解质溶液研究在理论和工业应用上都具有重要的意义,拉曼光谱、红外光谱、紫外可见光谱、中子和X射线衍射、以及X射线吸收精细结构方法都已经用于它的研究。随着温度升高,溶液的结构发生了变化,离子的缔合度增加,内层配位水的数目减少,出现了离子的多核簇组成。除了静态结构的研究外,也用拉曼光谱进行溶液的动力学探讨。水热金刚石压腔装置是高温高压电解质溶液研究的一个重要的进步,在水热金刚石压腔装置中,拉曼光谱和X射线吸收精细结构两种方法具有重要的应用潜力。  相似文献   

19.
徐崇  史韡朝  李志 《光谱实验室》2012,29(3):1652-1655
从理论上证明了光栅衍射的光谱级数与实验绝对误差的关系,得到二级衍射谱线的精度高于一级衍射谱线的精度,从而能降低实验误差。依据实验数据,计算得到衍射光谱级数不同时的波长,实验结果与理论结论是相吻合的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号