共查询到14条相似文献,搜索用时 62 毫秒
1.
随着光伏产业的不断发展,有机无机杂化钙钛矿太阳能电池的研发成为科学与工业界广泛关注的焦点。到目前为止,其光电转换效率已经提高到了25.2%,成为替代硅基太阳能电池的核心方案之一。然而,钙钛矿太阳能电池的稳定性较差,容易受到环境中氧气、水分、温度甚至光照的影响,这严重制约了其大规模推广与应用。大量科学研究表明,如何避免紫外辐照下有机无机杂化钙钛矿太阳能电池的性能衰减,对于提高钙钛矿太阳能电池的光照稳定性至关重要。然而到目前为止,仍然没有系统的工作来对紫外辐照下钙钛矿太阳能电池性能以及微结构演化过程进行详细的表征与分析。本文中,我们利用聚焦离子束-扫描电子显微分析(FIB-SEM)以及球差校正透射电子显微分析(TEM)等技术,全面地研究了紫外辐照过程中有机无机杂化钙钛矿太阳能电池性能变化规律以及电池微结构演化特征。实验结果表明,紫外辐照过程中太阳能电池内部会形成0.5–0.6 V的内建电场,钙钛矿中的I-离子在电场的驱动下向金属Au电极和空穴传输层2, 2’, 7, 7’-四[N, N-二(4-甲氧基苯基)氨基]-9, 9'-螺二芴(Spiro-OMeTAD)一侧迁移;随后,空穴传输层与金电极的界面处,碘离子与光生空穴一起与金电极发生反应,将金属态Au氧化成离子态Au+。而Au+离子则在内建电场的驱动下反向迁移穿过钙钛矿MAPbI3层,直接被SnO2和MAPbI3界面处的电子还原形成金属Au纳米团簇。除此之外,紫外辐照过程中钙钛矿太阳能电池性能降低的同时,往往伴随着Spiro-OMeTAD与钙钛矿界面处物质迁移、钙钛矿薄膜内晶界展宽以及Au纳米颗粒周围MAPbI3物相分解等现象。以上各种因素的协同作用,共同导致了紫外光照下有机无机杂化钙钛矿太阳能电池光电转换性能(PCE)、开路电压(Voc)以及短路电流(Jsc)等性能参数的急剧下降。 相似文献
2.
钙钛矿太阳能电池在实现高性能光伏器件方面展现出巨大的商业化应用前景,但面临着一个最主要的挑战是开发工业化规模生产的大面积高质量钙钛矿薄膜制备工艺。在本研究中,为解决大面积印刷难题,通过两步连续刮涂法制备甲脒基钙钛矿吸光层。两步法中第一步沉积的PbI2很容易形成致密的薄膜,这将导致后续沉积的有机胺盐无法和PbI2充分完全反应,在钙钛矿薄膜中残留PbI2,这会严重影响载流子的传输。为了实现理想的多孔PbI2薄膜结构,我们通过在PbI2前驱体溶液中引入四亚甲基亚砜(THTO)。通过形成PbI2·THTO络合物,PbI2的结晶过程被有效控制,易形成片状的PbI2晶粒并沿着垂直基底方向上排列,得到了理想的纳米通道。这为后续的有机胺盐渗入提供了理想的纳米通道。最终5 cm × 5 cm模组实现了18.65%的功率转化效率,并具有出色的存储和热稳定性。这一结果展现了两步连续刮涂法策略在制备大面积钙钛矿太阳能电池方面具备一定的优势。 相似文献
3.
钙钛矿太阳能电池在实现高性能光伏器件方面展现出巨大的商业化应用前景,但面临着一个最主要的挑战是开发工业化规模生产的大面积高质量钙钛矿薄膜制备工艺。在本研究中,为解决大面积印刷难题,通过两步连续刮涂法制备甲脒基钙钛矿吸光层。两步法中第一步沉积的PbI2很容易形成致密的薄膜,这将导致后续沉积的有机胺盐无法和PbI2充分完全反应,在钙钛矿薄膜中残留PbI2,这会严重影响载流子的传输。为了实现理想的多孔PbI2薄膜结构,我们通过在PbI2前驱体溶液中引入四亚甲基亚砜(THTO)。通过形成PbI2·THTO络合物,PbI2的结晶过程被有效控制,易形成片状的PbI2晶粒并沿着垂直基底方向上排列,得到了理想的纳米通道。这为后续的有机胺盐渗入提供了理想的纳米通道。最终5cm×5cm模组实现了18.65%的功率转化效率,并具有出色的存储和热稳定性。这一结果展现了两步连续刮涂法策略在制备大面积钙钛矿太阳能电池方面具备一定的优势。 相似文献
4.
5.
甲脒基铅卤钙钛矿作为光电转换材料,引起了人们的广泛关注. 采用第一性原理对甲脒基铅卤钙钛矿FAPbIxCl3-x(FA=NH2CH=NH2+,x=0~3)的结构及光电特性进行了理论研究. 计算结果表明,FA在三方晶系的FAPbX3(X=Cl,Br,I)中沿[001]方向排布,而在混合FAPbIxCl3-x中,八面体PbX6(X=Cl,I)的扭转导致FA朝向发生了微小的偏移. FA对于平衡晶体结构起着重要的作用,并作为电荷供体为PbI3骨架贡献约0.76 e的电荷. FAPbIxCl3-x属于直接带隙半导体,其价带顶(VBM)主要由I 5p(Cl 3p)和少量Pb 6s轨道杂化的反键轨道组成,而导带底主要由Pb 6p轨道组成. 随着I/Cl比例的增大,FAPbIxCl3-x的晶格常数和体积逐渐增大,禁带宽度逐渐减小,吸收光谱发生红移. FAPbI3的禁带宽度为1.53 eV,表现出最佳的吸收光谱特性,是一类极具潜力的光电转换材料. 相似文献
6.
《Angewandte Chemie (International ed. in English)》2017,56(50):15806-15817
Hybrid halide perovskite solar cells (PSCs) giving over 22 % power conversion efficiencies (PCEs) have attracted considerable attention. Although perovskite plays a significant role in the operation of PSCs, the fundamental theories associated with perovskites have not been resolved in spite of the increase in research. In this Minireview, we assess the current understanding, based on the first‐principles calculations, of structural and electronic properties, defects, ionic diffusion, and shift current for CH3NH3PbI3 perovskite, and the effect of ionic transport on the hysteresis of current–voltage curves in PSCs. The shift current connected to the possible presence of ferroelectricity is also discussed. The current state‐of‐the‐art and some open questions regarding PSCs are also highlighted, and the benefits, challenges, and potentials of perovskite for use in PSCs are stressed. 相似文献
7.
Inkjet Printing and Instant Chemical Transformation of a CH3NH3PbI3/Nanocarbon Electrode and Interface for Planar Perovskite Solar Cells 下载免费PDF全文
Zhanhua Wei Dr. Haining Chen Dr. Keyou Yan Prof. Shihe Yang 《Angewandte Chemie (International ed. in English)》2014,53(48):13239-13243
A planar perovskite solar cell that incorporates a nanocarbon hole‐extraction layer is demonstrated for the first time by an inkjet printing technique with a precisely controlled pattern and interface. By designing the carbon plus CH3NH3I ink to transform PbI2 in situ to CH3NH3PbI3, an interpenetrating seamless interface between the CH3NH3PbI3 active layer and the carbon hole‐extraction electrode was instantly constructed, with a markedly reduced charge recombination compared to that with the carbon ink alone. As a result, a considerably higher power conversion efficiency up to 11.60 % was delivered by the corresponding solar cell. This method provides a major step towards the fabrication of low‐cost, large‐scale, metal‐electrode‐free but still highly efficient perovskite solar cells. 相似文献
8.
Enhancement of the Photovoltaic Performance of CH3NH3PbI3 Perovskite Solar Cells through a Dichlorobenzene‐Functionalized Hole‐Transporting Material 下载免费PDF全文
Jin‐Wook Lee Sungmin Park Dr. Min Jae Ko Dr. Hae Jung Son Prof. Nam‐Gyu Park 《Chemphyschem》2014,15(12):2595-2603
A dichlorobenzene‐functionalized hole‐transporting material (HTM) is developed for a CH3NH3PbI3‐based perovskite solar cell. Notwithstanding the similarity of the frontier molecular orbital energy levels, optical properties, and hole mobility between the functionalized HTM [a polymer composed of 2′‐butyloctyl‐4,6‐dibromo‐3‐fluorothieno[3,4‐b]thiophene‐2‐carboxylate (TT‐BO), 3′,4′‐dichlorobenzyl‐4,6‐dibromo‐3‐fluorothieno[3,4‐b]thiophene‐2‐carboxylate (TT‐DCB), and 2,6‐bis(trimethyltin)‐4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐EH), denoted PTB‐DCB21] and the nonfunctionalized polymer [a polymer composed of thieno[3,4‐b]thiophene (TT) and benzo[1,2‐b:4,5‐b′]dithiophene (BDT), denoted PTB‐BO], a higher power conversion efficiency for PTB‐DCB21 (8.7 %) than that for PTB‐BO (7.4 %) is achieved because of a higher photocurrent and voltage. The high efficiency is even obtained without including additives, such as lithium bis(trifluoromethanesulfonyl)imide and/or 4‐tert‐butylpyridine, that are commonly used to improve the conductivity of the HTM. Transient photocurrent–voltage studies show that the PTB‐DCB21‐based device exhibits faster electron transport and slower charge recombination; this might be related to better interfacial contact through intermolecular chemical interactions between the perovskite and the 3,4‐dichlorobenzyl group in PTB‐DCB21. 相似文献
9.
Dr. Yue Lu Zhixiang Si Hongpeng Liu Yang Ge Jingcong Hu Zeyu Zhang Xulin Mu Karuppaiah Selvakumar Prof. Manling Sui 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(11):3729-3736
Theoretical studies have shown that surface terminations, such as MAI or PbI layers, greatly affect the environmental stability of organic–inorganic perovskite. However, until now, there has been little effort to experimentally detect the existence of MAI or PbI terminations on MAPbI3 grains, let alone disclose their effects on the humidity degradation pathway of perovskite solar cell. Here, we successfully modified and detected the surface terminations of MAI and PbI species on polycrystalline MAPbI3 films. MAI-terminated perovskite film followed the moisture degradation process from MAPbI3 to hydrate MAPbI3⋅H2O and then into PbI2, with penetration of water molecules being the main driving force leading to the degradation of MAPbI3 layer by layer. In contrast, for the PbI-terminated perovskite film in a humid atmosphere, a deprotonation degradation pathway was confirmed, in which the film preferentially degraded directly from MAPbI3 into PbI2, here the iodine defects played a key role in promoting the dissociation of water molecules into OH− and further catalyzing the decomposition of perovskite. 相似文献
10.
Jiangjian Shi Huiyun Wei Songtao Lv Xin Xu Huijue Wu Prof. Yanhong Luo Prof. Dongmei Li Prof. Qingbo Meng 《Chemphyschem》2015,16(4):842-847
Carrier density and transport properties in the CH3NH3PbI3 thin film have been investigated. It is found that the carrier density, the depletion field, and the charge collection and transport properties in the CH3NH3PbI3 absorber film can be controlled effectively by different concentrations of reactants. That is, the carrier properties and the self‐doping characteristics in CH3NH3PbI3 films are strongly influenced by the reaction thermodynamic and kinetic processes. Furthermore, by employing mixed solvents with ethanol and isopropanol to deposit the CH3NH3PbI3 film, the charge collection and transport efficiencies are improved significantly, thereby yielding an overall enhanced cell performance. 相似文献
11.
Highly Efficient,Reproducible, Uniform (CH3NH3)PbI3 Layer by Processing Additive Dripping for Solution‐Processed Planar Heterojunction Perovskite Solar Cells 下载免费PDF全文
A processing additive dripping (PAD) approach to forming highly efficient (CH3NH3)PbI3 (MAPbI3) perovskite layers was investigated. A MAPbI3(CB/DIO) perovskite film fabricated by this approach, which included briefly dripping chlorobenzene incorporating a small amount of diiodooctane (DIO) during casting of a MAPbI3 perovskite precursor dissolved in dimethylformamide, exhibited superior smooth, uniform morphologies with high crystallinity and large grains and revealed completely homogeneous surface coverage. The surface coverage and morphology of the substrate significantly affected the photovoltaic performance of planar heterojunction (PHJ) perovskite solar cells (PrSCs), resulting in a power conversion efficiency of 11.45 % with high open‐circuit voltage of 0.91 V and the highest fill factor of 80.87 %. Moreover, the PAD approach could effectively provide efficient MAPbI3(CB/DIO) perovskite layers for highly efficient, reproducible, uniform PHJ PrSC devices without performance loss or variation even over larger active areas. 相似文献
12.
Dr. Alessandra Alberti Dr. Ioannis Deretzis Dr. Giovanna Pellegrino Dr. Corrado Bongiorno Dr. Emanuele Smecca Dr. Giovanni Mannino Dr. Filippo Giannazzo Prof. Guglielmo Guido Condorelli Dr. Nobuya Sakai Prof. Tsutomu Miyasaka Dr. Corrado Spinella Dr. Antonino La Magna 《Chemphyschem》2015,16(14):3064-3071
We investigate the degradation path of MAPbI3 (MA=methylammonium) films over flat TiO2 substrates at room temperature by means of X‐ray diffraction, spectroscopic ellipsometry, X‐ray photoelectron spectroscopy, and high‐resolution transmission electron microscopy. The degradation dynamics is found to be similar in air and under vacuum conditions, which leads to the conclusion that the occurrence of intrinsic thermodynamic mechanisms is not necessarily linked to humidity. The process has an early stage, which drives the starting tetragonal lattice in the direction of a cubic atomic arrangement. This early stage is followed by a phase change towards PbI2. We describe how this degradation product is structurally coupled with the original MAPbI3 lattice through the orientation of its constituent PbI6 octahedra. Our results suggest a slight octahedral rearrangement after volatilization of HI+CH3NH2 or MAI, with a relatively low energy cost. Our experiments also clarify why reducing the interfaces and internal defects in the perovskite lattice enhances the stability of the material. 相似文献
13.
14.
Methylamine‐Gas‐Induced Defect‐Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells 下载免费PDF全文
Dr. Zhongmin Zhou Zaiwei Wang Yuanyuan Zhou Dr. Shuping Pang Dong Wang Dr. Hongxia Xu Dr. Zhihong Liu Prof. Nitin P. Padture Dr. Guanglei Cui 《Angewandte Chemie (International ed. in English)》2015,54(33):9705-9709
We report herein the discovery of methylamine (CH3NH2) induced defect‐healing (MIDH) of CH3NH3PbI3 perovskite thin films based on their ultrafast (seconds), reversible chemical reaction with CH3NH2 gas at room temperature. The key to this healing behavior is the formation and spreading of an intermediate CH3NH3PbI3?xCH3NH2 liquid phase during this unusual perovskite–gas interaction. We demonstrate the versatility and scalability of the MIDH process, and show dramatic enhancement in the performance of perovskite solar cells (PSCs) with MIDH. This study represents a new direction in the formation of defect‐free films of hybrid perovskites. 相似文献