共查询到17条相似文献,搜索用时 59 毫秒
1.
针对柔性作业车间调度问题,提出一种新型两阶段动态混合群智能优化算法.算法初始阶段采用动态邻域的协同粒子群进行粗搜索,第二阶段提出了基于混沌算子的蜂群进行细搜索,既增强了种群多样性,又提高了算法搜索精度,实现了全局搜索与局部搜索能力的有效平衡.针对柔性作业车间调度问题特点,采用独特的编码方式和位置更新策略来避免不合法解的产生.最后将此算法在不同规模的实例上进行了仿真测试,并与最近提出的其他几种具有代表性的算法进行了比较,验证了算法的有效性和优越性. 相似文献
2.
随着绿色制造的到来,在调度问题中考虑能源消耗相关的目标变得至关重要,这已经成为了当下热点研究领域。因此,本文建立以最小化最大完工时间、机器总负荷和总能量消耗为目标的柔性作业车间调度数学模型。就回溯搜索算法的缺点提出改进,该算法通过结合改变个体搜索幅度因子对变异操作进行动态控制,防止种群迭代过程中陷入局部最优,然后通过结合个体引导与随机数扰乱提出一种新的交叉算子,提高后期寻优能力,防止了算法过早收敛。最后,运用基准算例对该算法的求解性进行了验证,并与文献中其他算法从求解精度、求解多样性、求解最优值等方面进行对比,结果表明该改进算法具有优越的求解性能。最后为该问题后续研究提供了三个可行方向:考虑更多约束条件、增加局部搜索算子和考虑实例分析。 相似文献
3.
车间作业调度问题是个典型的NP-hard问题,为了更有效的解决车间作业调度问题,提出了一种改进的混合算法(IGASA).算法设计了一种基于当前最优解的免疫算子,算子对当前最优个体中选取运行时间最少的一台机器上的工件顺序当作疫苗,并用车间调度问题的图论模型解释了此算子的合理性.最后通过大量实验证明改进的混合算法的性能的优越性,从而证明设计的免疫算子是有意义的. 相似文献
4.
作业车间调度是一类求解困难的组合优化问题,本文在考虑遗传算法早熟收敛问题和禁忌搜索法自适应优点的基础上,将遗传算法和禁忌搜索法相结合,提出了一种基于遗传和禁忌搜索的混合算法,并用实例对该算法进行了仿真研究.结果表明,该算法有很好的收敛精度,是可行的,与传统的算法相比较,有明显的优越性. 相似文献
5.
目前求解置换流水车间调度问题的智能优化算法都是随机型优化方法,存在的一个问题是解的稳定性较差。针对该问题,本文给出一种确定型智能优化算法——中心引力优化算法的求解方法。为处理基本中心引力优化算法对初始解选择要求高的问题,利用低偏差序列生成初始解,提高初始解质量;利用加速度和位置迭代方程更新解的状态;利用两位置交换排序法进行局部搜索,提高算法的优化性能。采用置换流水车间调度问题标准测试算例进行数值实验,并和基本中心引力优化算法、NEH启发式算法、微粒群优化算法和萤火虫算法进行比较。结果表明该算法不仅具有更好的解的稳定性,而且具有更高的计算精度,为置换流水车间调度问题的求解提供了一种可行有效的方法。 相似文献
6.
针对柔性作业车间调度完工时间最小问题,提出一种结合DBR(鼓-缓冲器-绳子)理论和改进遗传算法的方法。在问题初始化时,建立瓶颈机器识别机制改善初始化方法,提高初始解的质量;在运算过程中依据关键路径建立瓶颈机器的识别机制和调度策略。为了更好保留每代中的优良解,采用外部精英库对优良解进行解保留。运用提出的算法求解基准测试问题,实验结果验证了算法的可行性和有效性。 相似文献
7.
针对车间调度的问题,提出一种改进的演化算法.在算法中,首先引入个体之间距离和邻域的定义,从而根据距离来确定个体的相似性,并且根据个体的相似性对种群进行分级,以此得到新解产生的邻域.此外,为了提高算法的收敛速度,对较好的个体加入加速因子—列队竞争算子.最后,通过数值仿真检验,验证了算法的有效性和优越性. 相似文献
8.
基于遗传算法的多目标柔性工作车间调度问题求解 总被引:2,自引:0,他引:2
本文针对柔性工作车间调度问题给出了一个有意义的综合目标尽可能缩短制造周期的同时尽可能的减少机器负荷。由于传统遗传算法在多目标柔性工作车间调度问题上的局限性,我们提出了一种改进遗传算法:首先,我们给出了针对综合目标的工序调度算法获得初始集合;接着,针对柔性工作车间调度问题的特点,我们在常用的基于工序顺序的编码方法上融入了基于机器分配的编码方法,并据此设计了相应的交叉变异操作;最后借鉴了物种进化现象中的环境迁移思想设计了解决多目标优化问题的迁移操作。实验结果表明,改进的遗传算法在多目标柔性工作车间调度问题的解决上要优于传统遗传算法。 相似文献
9.
10.
11.
12.
We deal with the application of ant colony optimization to group shop scheduling, which is a general shop scheduling problem that includes, among others, the open shop scheduling problem and the job shop scheduling problem as special cases. The contributions of this paper are twofold. First, we propose a neighborhood structure for this problem by extending the well-known neighborhood structure derived by Nowicki and Smutnicki for the job shop scheduling problem. Then, we develop an ant colony optimization approach, which uses a strong non-delay guidance for constructing solutions and which employs black-box local search procedures to improve the constructed solutions. We compare this algorithm to an adaptation of the tabu search by Nowicki and Smutnicki to group shop scheduling. Despite its general nature, our algorithm works particularly well when applied to open shop scheduling instances, where it improves the best known solutions for 15 of the 28 tested instances. Moreover, our algorithm is the first competitive ant colony optimization approach for job shop scheduling instances. 相似文献
13.
14.
针对零等待流水车间调度问题特性,设计了一种蝙蝠算法进行求解.算法模拟蝙蝠捕食搜索行为进行寻优,利用基于最小位置值规则的随机键编码方式来表示问题解,采用基于NEH方法的局部搜索策略和随机交换、插入、逆序操作的变邻域搜索策略来提高局部优化性能,进一步根据Metropolis概率准则接受劣解来避免早熟.通过典型算例对所提算法进行仿真测试并与粒子群算法和RAJ启发式算法进行对比,结果表明所设计算法求解零等待流水车间调度问题的有效性和优越性,是求解流水车间生产调度问题的一种有效工具. 相似文献
15.
The job shop scheduling problem is considered, and an algorithm based on the global equilibrium search method is proposed for its solution. Computational experiments using well-known benchmark problems are presented. Several new upper bounds for these problems are obtained.Research partially supported by NSF and AirForce grants. 相似文献
16.
A Computational Study of Shifting Bottleneck Procedures for Shop Scheduling Problems 总被引:5,自引:0,他引:5
We examine the performance of Shifting Bottleneck (SB) heuristics for shop scheduling problems where the performance measure to be minimized is makespan (C
max) or maximum lateness (L
max). Extensive computational experiments are conducted on benchmark problems from the literature as well as several thousand randomly generated test problems with three different routing structures and up to 1000 operations. Several different versions of SB are examined to determine the effect on solution quality and time of different subproblem solution procedures, reoptimization procedures and bottleneck selection criteria. Results show that the performance of SB is significantly affected by job routings, and that SB with optimal subproblem solutions and full reoptimization at each iteration consistently outperforms dispatching rules, but requires high computation times for large problems. High quality subproblem solutions and reoptimization procedures are essential to obtaining good solutions. We also show that schedules developed by SB to minimize L
max perform well with respect to several other performance measures, rendering them more attractive for practical use. 相似文献
17.
F. Guerriero 《Journal of Optimization Theory and Applications》2008,139(2):419-438
In this paper, we focus on heuristic approaches for solving the deterministic job shop scheduling problem. More specifically,
a new priority dispatch rule and hybrid rollout algorithms are developed for approaching the problem under consideration.
The proposed solution algorithms are tested on a set of instances taken from the literature and compared with other methods.
The computational results validate the effectiveness of the developed solution approaches and show that the proposed rollout
algorithms are competitive with respect to several state-of-art heuristics for solving the job shop scheduling problem.
The author thanks Dr. Marco Mancini and Dr. Alessandro Tarasio for valuable suggestions about computational issues. 相似文献