首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The separation of several insect oostatic peptides (IOPs) was achieved by using CEC with a strong-cation-exchange (SCX) stationary phase in the fused-silica capillary column of 75 microm id. The effect of organic modifier, ionic strength, buffer pH, applied voltage, and temperature on peptides' resolution was evaluated. Baseline separation of the studied IOPs was achieved using a mobile phase containing 100 mM pH 2.3 sodium phosphate buffer/water/ACN (10:20:70 v/v/v). In order to reduce the analysis time, experiments were performed in the short side mode where the stationary phase was packed for 7 cm only. The selection of the experimental parameters strongly influenced the retention time, resolution, and retention factor. An acidic pH was selected in order to positively charge the analyzed peptides, the pI's of which are about 3 in water buffer solutions. A good selectivity and resolution was achieved at pH <2.8; at higher pH the three parameters decreased due to reduced or even zero charge of peptides. The increase in the ionic strength of the buffer present in the mobile phase caused a decrease in retention factor for all the studied compounds due to the decreased interaction between analytes and stationary phase. Raising the ACN concentration in the mobile phase in the range 40-80% v/v caused an increase in both retention factor, retention time, and resolution due to the hydrophilic interactions of IOPs with free silanols and sulfonic groups of the stationary phase.  相似文献   

2.
Chiral separation of basic compounds was achieved by using 75 or 100 microm ID fused-silica capillaries packed with a vanoomycin-modified diol silica stationary phase. The capillary was firstly packed for about 12 cm with a slurry mixture composed of diolsilica (3:1) then with the vancomycin modified diol-silica (3:1) (23 cm), and finally with diol-silica (3:1) for about 2 cm. Frits were prepared by a heating wire at the two ends of the capillary; the detector window was prepared at 8.5 cm from the end of the capillary where vancomycin was not present. The influence of the mobile phase composition (pH and concentration, organic modifier type and concentration) on the velocity of the electroosmotic flow, chiral resolution and enantioselectivity was studied. Good enantiomeric resolution was achieved for atenolol, oxprenolol, propranolol, and venlafaxine using a mobile phase composition of 100 mM ammonium acetate solution (pH 6)/water/acetonitrile (5:5:90 v/v/v) while for terbutaline a mixture of 5:15:80 v/v/v provided the best separations. The use of methanol instead of acetonitrile caused a general increase of enantiomer resolution of the studied compounds together with a reduction of efficiency and detector response. However, the combination of acetonitrile and methanol in the mobile phase (as, e.g., 10% methanol and 80% acetonitrile) allowed to improve the enantiomer resolution with satisfactory detector response.  相似文献   

3.
In this paper, the simultaneous separation of several polyphenols such as (+)‐catechin, (–)‐epicatechin, (–)‐epigallocatechin, theophylline, caffeine in green and black teas by capillary electrochromatography (CEC) was developed. Several experimental parameters such as stationary phase type, mobile phase composition, buffer and pH, inner diameter of the columns, sample injection, were evaluated to obtain the complete separation of the analysed compounds. Baseline resolution of the studied polyphenols was achieved within 30 min by using a capillary column (id 100 μm) packed with bidentate C18 particles for 24.5 cm and a mobile phase composed of 5 mM ammonium acetate buffer pH 4 with H2O/ACN (80:20, v/v). The applied voltage and the temperature were set at 30 kV and 20°C. Precision, detection and quantification limits, linearity, and accuracy were investigated. A good linearity (R2 > 0.9992) was achieved over a concentration working range of 2–100 μg/mL for all the analytes. LOD and LOQ were 1 and 2 μg/mL, respectively, for all studied compounds. The CEC method was applied to the analysis of those polyphenols in green and black tea samples after an extraction procedure. Good recovery data from accuracy studies ranged between 90% and 112% for all analytes.  相似文献   

4.
The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.  相似文献   

5.
A fused silica capillary column was packed with RP(18) silica stationary phase entrapping the particles between two frits obtained by two different procedures. The inlet frit consisted of a short organic polymer made via a thermopolymerization process while the outlet frit was prepared by sintering the octadecylsilica (ODS) material. The packed column was employed in capillary electrochromatography (CEC) experiments for the separation of three selected test compounds. Retention time and separation efficiency were evaluated. Results were compared with those ones obtained with a packed capillary containing the same stationary phase entrapped between two sinterized frits. The novel packed column exhibited comparable separation efficiency and resolution with the traditional one. However, it allowed experiments without pressure support during the runs with no bubble formation.  相似文献   

6.
A new chiral stationary phase (CSP) was prepared by reacting MDL 63,246 (Hepta-Tyr), a glycopeptide antibiotic belonging to the teicoplanin family, with 5-μm diol-silica particles. The CSP mixed with 5-μm amino silica particles (3:1) was packed into 75-μm fused-silica capillaries for only 6.6 cm and used for electrochromatographic experiments analyzing several hydroxy acid enantiomers. A reversed electroosmotic flow carried both analytes and mobile phase towards the anode in a short time (1–3 min), being baseline resolved all the studied analytes. In order to achieve the fastest enantiomeric resolution of the studied hydroxy acids, the effect of several experimental parameters such as mobile phase composition (organic modifier type and concentration, pH of the buffer and ionic strength), capillary temperature and applied voltage on enantioresolution factor, retention time, enantioselectivity were evaluated. The packed capillary column allowed the separation of mandelic acid enantiomers in less than 72 s with resolution factor Rs=2.18 applying a voltage of 30 kV and eluting with a mobile phase composed by 50 mM ammonium acetate (pH 6)–water–acetonitrile (1:4:5, v/v). The CSP was also tested in the capillary liquid chromatography mode resolving all the studied enantiomers applying 12 bar pressure to the mobile phase [50 mM ammonium acetate (pH 6)–water–methanol–acetonitrile, 1:4:2:3, v/v)], however, relatively long analysis times were observed (12–20 min).  相似文献   

7.
Aqueous and nonaqueous capillary electrophoresis (NACE) were investigated for separation of venlafaxine, a new second-generation antidepressant, and its three phase I metabolites. Working at basic pH, around the venlafaxine pKa value, was effective in resolving the investigated drugs, but created considerable peak tailing. To overcome electrostatic interactions between analytes and silanol groups, investigations were also carried out at acidic pH. However, despite the addition of up to 50% v/v of organic solvents (e.g., methanol or acetonitrile), complete separation of the studied compounds was not possible. NACE was found to be an appropriate alternative to resolve venlafaxine and its metabolites simultaneously. Using a conventional capillary (fused-silica, 64.5 cm length, 50 microm inner diameter), and a methanol-acetonitrile mixture (20/80 v/v) containing 25 mM ammonium formate and 1 M formic acid, complete resolution of these closely related compounds was performed in less than 3.5 min. Selectivity, efficiency and separation time were greatly affected by the organic solvent composition. As the electric current generated in nonaqueous medium was very low, the electric field was further increased by reducing the capillary length. This allowed a baseline resolution of venlafaxine and its three metabolities in 0.7 min. Selectivity was compared in aqueous and nonaqueous media in relation to the acid-base properties of the analytes as well as to the solvation degree. Finally, the method successfully coupled on-line to mass spectrometry with electrospray ionization interface allowed significant sensitivity enhancement.  相似文献   

8.
In this study, the retention and selectivity of a mixture of basic polar drugs were investigated in hydrophilic interaction chromatographic conditions (HILIC) using nano-liquid chromatography (nano-LC). Six sympathomimetic drugs including ephedrine, norephedrine, synephrine, epinephrine, norepinephrine and norphenylephrine were separated by changing experimental parameters such as stationary phase, acetonitrile (ACN) content, buffer pH and concentration, column temperature. Four polar stationary phases (i.e. cyano-, diol-, aminopropyl-silica and Luna HILIC, a cross-linked diol phase) were selected and packed into fused silica capillary columns of 100 μm internal diameter (i.d.). Among the four stationary phases investigated a complete separation of the all studied compounds was achieved with aminopropyl silica and Luna HILIC stationary phases only. Best chromatographic results were obtained employing a mobile phase composed by ACN/water (92/8, v/v) containing 10 mM ammonium formate buffer pH 3. The influence of the capillary temperature on the resolution of the polar basic drugs was investigated in the range between 10 and 50 °C. Linear correlation of ln k vs. 1/T was observed for all the columns; ΔH° values were negative with Luna HILIC and positive with aminopropyl- and diol-silica stationary phases, demonstrating that different mechanisms were involved in the separation.To compare the chromatographic performance of the different columns, Van Deemter curves were also investigated.  相似文献   

9.
Reversed-phase capillary electrochromatography in a 5-microm C18 fully packed capillary was employed to optimize the separation of negatively charged nonsteroidal anti-inflammatory drugs. The effect of the physico-chemical parameters and different analysis modes on the separation of 2-arylpropionic acids was studied and evaluated. The mobile phase composition, buffer type, concentration and pH differently influenced the peak efficiency and resolution, selectively modulating the analytes interaction with the stationary phase. The use of zwitterionic MES or acetate mobile phases strongly modulated the analytes migration order and peak efficiency. The optimum experimental conditions were found in MES buffer, pH 5.0, containing the 75% acetonitrile-methanol (1:1). All the analytes were baseline separated in a mixture in less than 13 min with peak efficiencies in the range of 78,500-84,200 N/m. Under these conditions the analytes were negatively charged and their effective electrophoretic mobilities played a role in the separation. The analysis of different pharmaceutical preparations containing anti-inflammatory drugs, e.g. drops and tablets, is also presented after a very simple sample pretreatment.  相似文献   

10.
A liquid chromatographic chiral stationary phase based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid was applied to the resolution of 15 analytes, including racemic rasagiline, a chiral drug for the treatment of Parkinson's disease, and its analogues. The composition of mobile phase was optimized to be ethanol/acetonitrile/acetic acid/triethylamine (80:20:0.2:0.3, v/v/v/v) by evaluating the chromatographic results for the resolution of five selected analytes under various mobile phase conditions. Under the optimized mobile phase conditions, racemic rasagiline was resolved quite well with a separation factor of 1.48 and resolution of 2.71 and its 14 analogues were also resolved reasonably well with separation factors of 1.06–1.54 and resolutions of 0.54–2.11. Among 15 analytes, racemic rasagiline was resolved best except for just one analyte. The analyte structure–enantioselectivity relationship indicated that racemic rasagiline has the most appropriate structural characteristics for resolution on the chiral stationary phase.  相似文献   

11.
Different types of fused-silica capillaries of 75 microm inside diameter (ID) were packed, namely type A and B, and evaluated for the direct resolution of racemates of several basic compounds by enantioselective capillary electrochromatography (e-CEC). Type A was packed with a chiral stationary phase (CSP) containing teicoplanin (TE) mixed with silica microparticles (3:1 w/w) while type B contained only the TE-CSP. In both cases, particles of different sizes (3.5 and 5 microm ID) were employed. A polar-organic mobile phase containing methanol-acetonitrile (60-40% v/v and 0.05% w/v ammonium acetate was used. Several beta-blockers (alprenolol, oxprenolol, metoprolol, pindolol, salbutamol, propranolol, atenolol, acebutolol) were baseline-enantioresolved with both capillary types, in very short times.  相似文献   

12.
For Part II of our ongoing study, we present a strategy for stationary phase optimization for the capillary electrochromatographic (CEC) separation of the 12 methylated benzo[a]pyrene (MBAP) isomers. Utilizing the optimum mobile phase conditions from Part I of our study as a guide, seven commercially available stationary phases have been evaluated for their ability to separate highly hydrophobic MBAP isomers. Ranging in design from high-performance liquid chromatography (HPLC) to CEC application, each phase was slurry packed in house and tested for CEC suitability and performance. Several stationary phase parameters were investigated for their effects on MBAP separation including bonding type (monomeric or polymeric, % carbon loading, surface coverage), pore size, particle size, and type of alkyl substituent. In this manner, the present state of commercially available packings has been assessed in our laboratory. Utilizing the optimum polymeric C18-5 microm-100 A-PAH stationary phase, the effects of CEC packed bed length and capillary inside diameter (I.D.) were also evaluated. A 50 microm I.D. capillary, 25 cm packed bed length and 75% (v/v) acetonitrile, 12.5 mM Tris, pH 8.0, 20 degrees C at 30 kV, provided resolution of 11 out of 12 MBAP isomers thus showing the effectiveness of CEC for analysis of structurally similar methylated polyaromatic hydrocarbons.  相似文献   

13.
Mirtazapine (MIR) and two of its main metabolites, namely, 8-hydroxymirtazapine and N-desmethylmirtazapine, were separated in totheir enantiomers by nanoLC in a laboratory-made fused-silica capillary column (75 microm ID) packed with a vancomycin-modified silica stationary phase. The simultaneous separation of the three couples of the studied enantiomers was achieved in less than 33 min, using an experimentally optimized mobile phase delivered in the isocratic mode. Optimization of the mobile-phase composition was achieved by testing the influence of the buffer pH and concentration, the water concentration, the organic modifier type and concentration, and on the retention and resolution of the analytes. The optimum mobile-phase composition contained 500 mM ammonium acetate pH 4.5/water/MeOH/MeCN, 1:14:40:45 v/v/v/v. Using a UV detector at 205 nm, the method was validated studying several experimental parameters such as LOD and LOQ, intraday and interday repeatability, and linearity. Good results were achieved: LOD and LOQ were in the range 5-15 and 10-40 microg/mL, respectively (the highest value was obtained for the DEMIR enantiomers); correlation coefficients, 0.9993-0.9999; the intraday and interday precision was acceptable (RSD < 2%) using an internal standard. The method was tested for the separation of the studied enantiomers in an extracted (solid-phase) serum sample spiked with standard racemic mixture of MIR and its two metabolites. Finally, the nanoLC system was connected to a mass spectrometer through a nanoelectrospray interface and the MS, MS2, and MS3 spectra were acquired showing the potential of the system used for characterization and identification of the separated analytes.  相似文献   

14.
A capillary-scale particle beam interface was used to detect 18 phenolic compounds in red wine samples. This technique allows reproducible, library searchable electron ionization spectra at only 1 microliter/min mobile phase flow-rate for a sensitive detection of the analytes in complex matrices. The method makes use of a narrow bore, reversed-phase packed capillary column for sample separation. Detection limits were in the low picogram range for most compounds. Sensitivity and response linearity were evaluated for eight phenolic acids, which are often encountered in red wines. The phenolic compound composition was outlined in two red wines obtained using different aging processes.  相似文献   

15.
A macroporous, spherical, 7 μm, polystyrene–divinylbenzene (PS–DVB), reversed-phase adsorbent (PRP-1) was evaluated as a stationary phase for the capillary electrochromatographic (CEC) separation of neutral, acidic, and basic analytes of pharmaceutical interest. Electroosmotic flow (EOF) for a PRP-1 packed capillary is nearly constant over the pH 2 to 10 range and is higher than for a silica-based C18 packed capillary on the acidic side. EOF increases with an increase in buffer acetonitrile concentration or as applied potential increases. As analyte hydrophobicity increases, analyte retention and migration time increases. Increasing buffer acetonitrile concentration reduces analyte partitioning with the PS–DVB stationary phase and analyte retention and migration time decreases. When exchange sites are present on the PS–DVB copolymer, EOF (EOF is reversed for the anion-exchanger) increases as the exchange capacity increases. An increased exchange capacity also reduces partitioning of the analyte with the PS–DVB matrix and analyte retention and migration time decrease. Because of excellent stability in an acid environment, the PRP-1 packed capillary can be used in strong acid buffer solution and weak acid and base analytes depending on pKa values can be separated as neutral species and cations, respectively. CEC separations on a PRP-1 capillary of neutral steroids, weak base pharmaceuticals (separation as cations), purines and pyrimidines (as cations), fatty acids (as undissociated species), and sulfa derivatives (as cations) are described. Efficiency for the PRP-1 packed capillary for acetone or thiourea as the analyte is about 6·104 plates m−1.  相似文献   

16.
In this study, we present a capillary electrochromatographic method for separation of basic compounds of interest in forensic science (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxyethylamphetamine, cocaine, codeine, heroin, morphine, and 6-monoacethylmorphine). Several analytical conditions were taken into account to completely separate in the same run the 10 drugs of abuse analyzed. Chromatographic retention, selectivity and efficiency were evaluated in dependence of the type of stationary phase (CN and RP-C18 derivatized silica particles), mobile phase composition, buffer type and pH, sample injection. The optimum separation parameters were set up using a mixture of aqueous sodium phosphate buffer (pH 2.5)/acetonitrile (80/20, v/v) as the mobile phase, 10 kV and 20 °C as applied voltage and capillary temperature, respectively. Under these conditions all the studied analytes were baseline resolved within 20 min. The method performance was investigated in terms of precision, linearity, sensitivity and accuracy to demonstrate the applicability of the developed capillary electrochromatographic system to forensic analysis. Calibration curves provided a good linearity over a working range of 100–1200 ng/mL for all analytes. Limits of detection and quantification were in the range 5–12 ng/mL and 10–30 ng/mL, respectively. Then the method was applied to the analysis of a human urine sample spiked with a basic compounds’ mixture. Urine samples’ pre-treatment was carried out through a solid phase extraction (SPE) procedure on strong cation exchange (SCX) cartridges.  相似文献   

17.
Enantiomeric separation of some selected acidic compounds of pharmaceutical interest belonging to the group of non-steroidal anti-inflammatory drugs were separated by capillary electrochromatography employing silica based glycopeptide antibiotic stationary phases, namely vancomycin or a teicoplanin derivatives (Hepta-Tyr). The vancomycin stationary phase allowed to achieve the chiral resolution of some racemic studied compounds only using mobile phases containing ammonium formate at a relatively low pH 2.5-3.5 and acetonitrile. Employing the teicoplanin derivative stationary phase, good enantiomeric resolution was achieved eluting with mobile phases containing sodium phosphate pH 6-acetonitrile. Enantiomers were moved to the detector because a relatively high reversed electroosmotic flow (due to the positive charge of the stationary phase) and to the electrophoretic mobility of analytes.  相似文献   

18.
瞿其曙  周瑜  彭生微  胡效亚  阎超 《色谱》2010,28(3):260-263
制备了1 μm无孔硅胶颗粒。通过电动填充法得到总长度为45 cm(固定相填充长度为20 cm)、内径为100 μm的毛细管色谱柱。以乙腈-水体系作为流动相,详细考察了碱性化合物在该色谱柱上的加压电色谱(pCEC)分离性能,讨论了流动相比例、缓冲液浓度、pH值及操作电压等因素对分离的影响。实验结果表明,裸硅胶柱在乙腈-水体系分离碱性样品中表现出典型的反相色谱分离性能;缓冲液浓度的改变则对分离影响不大。当pH值改变时,碱性化合物的解离程度发生变化,它们与固定相之间的作用力发生变化,使得分离度发生相应的变化。分离柱效随施加电压的增加而增加,在1 kV电压下,裸硅胶柱对邻甲苯胺的柱效为35000理论塔板/m。  相似文献   

19.
张含智  李凤  康经武 《色谱》2023,41(2):160-167
毛细管电泳-质谱联用技术具有分离效率高、检测灵敏度高、样品消耗量少,可同时提供样品的结构信息等优点,成为复杂样品分离分析的强有力工具。但是,毛细管电泳与质谱联用的接口技术依然未能很好的解决。为了拓展我们发展的金箔包裹的毛细管电泳分离柱尖端直接作为喷雾电极和无鞘流质谱接口的应用,本文报道了用无鞘流接口毛细管电泳-电喷雾质谱联用(CE-ESI-MS)分析5种酪氨酸激酶抑制剂(舒尼替尼、甲磺酸伊马替尼、吉非替尼、达沙替尼、埃罗替尼)的研究结果。这种接口集分离与电喷雾离子化于一根毛细管中,制作简单,成本低廉,且可批量制作。实验发现采用非水毛细管电泳分离模式不仅可以对5种酪氨酸激酶抑制剂实现基线分离,而且可以获得稳定的质谱信号。考察了电解质溶液组成对分离效果的影响,得到优化的背景电解质组成,即含2%(v/v)乙酸及5 mmol/L乙酸铵的乙腈-甲醇(80∶20, v/v)混合溶剂。在优化的条件下,5种激酶抑制剂可以得到基线分离,无鞘接口也可以长时间保持稳定的电喷雾,分析物的保留时间日内、日间重复性(RSD值)分别小于0.5%和0.8%,接口批次间的RSD值小于2.6%。与水相分离条件下的CE-MS对比,非水相条件下的5种酪氨酸激酶抑制剂的分离柱效更高,检测灵敏度更高,绝对检出限达到amol级。此外,采用无鞘流CE-MS分析了各类有机酸(千层纸素A、丹酚酸C和迷迭香酸)和脂溶性的大环内酯类抗生素(阿奇霉素、红霉素和环孢素A),均可以获得良好的分离效果和质谱检测结果。  相似文献   

20.
Several racemic acidic compounds of pharmaceutical and environmental interest have been separated into their enantiomers by nano-liquid chromatography (nano-LC) employing a tert-butylbenzoylated tartardiamide chiral stationary phase (CHI-TBB). CHI-TBB was packed into a fused silica capillary of 100 microm id and retained by two frits made with a heated wire; detection was on-column at a window (about 0.5 cm) prepared by removing the polyimide layer. The normal phase mode was selected for eluting the studied acidic compounds and therefore n-hexane/2-propanol/acetic acid (89/10/1, v/v/v) was used as mobile phase. Working at a flow rate of 220 nL/min a good resolution was obtained for mecoprop, dichlorprop, diclofop, fenoxaprop (herbicides) and for DF 1738Y, DF 1770Y, DF 2008Y (drugs under evaluation). In order to optimize the chiral resolution we modified the polarity of the mobile phase by adding several polar additives such as ethyl acetate, dichloromethane, tert-butyl methyl ether. Better results were obtained for some herbicides on working with 2-propanol/CH2Cl2/n-hexane/acetic acid (8/4/87/1, v/v/v/v). The influence of the capillary temperature on chiral resolution was studied for two herbicides with different chemical structures, namely mecoprop and haloxyfop in the temperature range between 10 and 40 degrees C and with n-hexane/2-propanol/1% acetic acid (89/10/1, v/v/v) as the mobile phase. Linear correlation of ln k vs 1/T and In alpha vs 1/ T was observed; deltaH degrees values were negative, demonstrating that retention of analytes was an exothermic process. A decrease in resolution was observed with rising temperature, showing that enantioresolution was mainly influenced by selectivity factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号