首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experimental design was applied to the synthesis of AlPO4-21 molecular sieve (AWO structure) by vapor phase transport (VPT) method, using tetramethylguanidine (TMG) as the template. In this study, the effects of crystallization time, crystallization temperature, phosphor content, template content and water content in the synthesis gel were investigated. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy and fourier transform infrared spectroscopy (FT-IR). Microstructural analysis of the crystal growth in vapor synthetic conditions revealed a revised crystal growth route from zeolite AlPO4-21 to AlPO4-15 in the presence of the TMG. Homogenous hexagonal prism AlPO4-21 crystals with size of 7 × 3 μm were synthesized at a lower temperature (120 °C), which were completely different from the typical tabular parallelogram crystallization microstructure of AlPO4-21 phase. The crystals were transformed into AlPO4-21 phase with higher crystallization temperature, longer crystallization time, higher P2O5/Al2O3 ratio and higher TMG/Al2O3 ratio.  相似文献   

2.
Reversible amorphization and memory effects of both dense and open frameworks have received a great attention due to their prospective industrial applications. In this paper, the results of a computational study related to phase transition and memory effects in AlPO4-5 nanoporous material at high external pressure is presented. The behavior of the AlPO4-5 unit cell at high external pressures was studied by energy minimization techniques using classical potentials. A combination of interatomic potentials was used to describe the crystalline structure of the aluminophosphate. According to simulation's result a decrease of crystalline order is observed at a pressure about 3.5 GPa. The behavior of the simulated infrared spectra of compressed structures is an unambiguous evidence of structural disorder. Also, an abrupt change in the slope of the unit cell volume vs. pressure curve was obtained. At P≤3.5 GPa the process was found reversible. Contrary to what has been reported in other aluminosilicate systems the final crystalline state of AlPO4-5 at the highest simulated pressure was not amorphous. According to our knowledge this is the first evidence of a reversible first-order crystal-crystal phase transition in AlPO- family materials. This result could be important in future industrial and catalytic applications of these materials.  相似文献   

3.
H. Manaka  M. Nishi  I. Yamada 《高压研究》2013,33(3-6):171-177
Abstract

Neutron scattering experiments on the two-dimensional Heisenberg ferromagnets Cs2 CuF4 and K2CuF4 have been performed around 2 ~ 3 GPa over 1·4–15 K. At ambient pressure both the intralayer and the interlayer exchange interactions in these two compounds are ferromagnetic. At about 2 GPa, the interlayer exchange coupling in Cs2 CuF4 is found to change from ferromagnetic to antiferromagnetic, while the ferromagnetic intralayer exchange interaction is maintained. Contrary to Cs2CuF4, the ferromagnetism in K2Cuf4 is not destroyed by pressure up to 9 GPa, that was confirmed in the early study of the magnetic susceptibility measurements.  相似文献   

4.
Iodine molecules have been incorporated into the channels of calcined AlPO4-5 crystals by using vapor-phase diffusion method. XRD results indicate that the iodine-loaded AlPO4-5 crystals are of similar structure as that of as-synthesized AlPO4-5 crystals. TG and XRF analyses reveal that the iodine molecules have not compactly filled the channels of AlPO4-5 crystals, and the desorbing process of adsorbed iodine is quite different from that of adsorbed water. Polarized Raman spectra imply that the iodine exists in the channels of AlPO4-5 crystals as vapor-like I2 molecules, and the I2 molecules orientate randomly.  相似文献   

5.
Two new transition metal dinitrides, ReN2 and WN2, with the P4/mmm structure are investigated by the first-principles calculations. The computed shear moduli of 327 GPa for ReN2 and 334 GPa for WN2 exceed those of all transition metal dinitrides previously reported. The estimated theoretical hardness are 46.3 GPa for ReN2 and 47.9 GPa for WN2, respectively. The calculated high shear moduli and hardness indicate that they are potential ultrahard materials. It is important to note that the computed hardness of the weakest bond are 34.7 GPa (W-N) for WN2 and 33.1 GPa (Re-N) for ReN2, much higher than that of 21.1 GPa (Re-B) for ReB2, which suggests that tetragonal ReN2 and WN2 are probably harder than ReB2. The total and partial electron density of states and the electron localization function for ReN2 and WN2 are analyzed. We attribute the high bulk modulus, shear modulus, and hardness to a three-dimensional covalently bonded framework in tetragonal ReN2 and WN2. Our calculations show that tetragonal ReN2 is expected to be synthesized above 62.7 GPa and tetragonal WN2 may be hard to be synthesized.  相似文献   

6.
Optical properties are studied for Se species accommodated in channels of an AlPO4–5 single crystal. Polarized Raman spectra show that the Se species is of helical chain structure with D3symmetry. The optical phonon modes of the Se chains are shifted towards higher frequencies from that of the trigonal Se crystal, because of the loss of inter-chain interactions in Se/AlPO4–5. High anisotropic absorption spectra have been observed for the Se chains. The lowest excitation energies are shifted towards high energy about 0.6 eV from the band edge transitions of the trigonal Se crystal. The blue shift is attributed to the quantum confinement of carriers in a Se chain with diameter 7.3 Å.  相似文献   

7.
BaWO4-II has been synthesized at 5 GPa and 610°C. Its high pressure behavior was studied by in situ synchrotron X-ray diffraction measurements at room temperature up to 17 GPa. BaWO4-II retains its monoclinic structure. Bulk and axial moduli determined by fitting a third-order Birch–Murnaghan equation of state to lattice parameters are: K 0=86.2±1.9 GPa, K 0(a)=56.0±0.9 GPa, K 0(b)=85.3±2.4 GPa, and K 0(c)=146.1±3.2 GPa with a fixed K′=4. Analysis of axial compressible modulus shows that the a-axis is 2.61 times more compressible than the c-axis and 1.71 times more compressible than the b-axis. The beta angle decreases smoothly between room pressure and 17 GPa from 93.78° to 90.90°.  相似文献   

8.
Zr-Si-N films were deposited on silicon and steel substrates by cathodic vacuum arc with different N2/SiH4 flow rates. The N2/SiH4 flow rates were adjusted at the range from 0 to 12 sccm. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), hardness and wear tests. The structure and the mechanical properties of Zr-Si-N films were compared to those of ZrN films. The results of XRD and XPS showed that Zr-Si-N films consisted of ZrN crystallites and SiNx amorphous phase. With increasing N2/SiH4 flow rates, the orientation of Zr-Si-N films became to a mixture of (1 1 1) and (2 0 0). The column width became smaller, and then appeared to vanish with the increase in N2/SiH4 flow rates. The hardness and Young's modulus of Zr-Si-N films increased with the N2/SiH4 flow rates, reached a maximum value of 36 GPa and 320 GPa at 9 sccm, and then decreased 32 GPa and 305 GPa at 12 sccm, respectively. A low and stable of friction coefficient was obtained for the Zr-Si-N films. Friction coefficient was about 0.1.  相似文献   

9.
The post-corundum phase transition has been investigated in Ti2O3 on the basis of synchrotron X-ray diffraction in a diamond anvil cell and transmission electron microscopy. The new polymorph of Ti2O3 was found at about 19 GPa and 1850 K, and this phase was stable even at about 40 GPa. A new polymorph of Ti2O3 can be indexed on a Pnma orthorhombic cell, and the unit-cell parameters are a=7.6965 (19) Å, b=2.8009 (9) Å, c=7.9300 (23) Å, V=170.95 (15) Å3 at 19 GPa, and a=7.8240 (2) Å, b=2.8502 (1) Å, c=8.1209 (3) Å, V=181.10 (1) Å3 at ambient conditions. The Birch–Murnaghan equation of state yields K 0=206 (3) GPa and K0=4 (fixed) for corundum phase, and K 0=296 (4) GPa and K0=4 (fixed) for the post-corundum phase. The molar volume decreases by 12% across the phase transition at around 20 GPa. The structural identification was carried out on a recovered sample by the Rietveld method, and a new polymorph of Ti2O3 can be identified as Th2S3-type rather than U2S3-type structure. The transition from corundum-type to Th2S3-type structure accompanies the drastic change of the form of polyhedron: from TiO6 octahedron in the corundum-type to TiO7 polyhedron in the Th2S3-type structures.  相似文献   

10.
High pressure angle-dispersive X-ray diffraction investigations have been carried out on α-cristobalite form of Al0.5Ga0.5PO4. Our investigations show that the structural stability of this phase under high pressure depends on the nature of pressure conditions in the diamond anvil cell. Under hydrostatic pressure conditions using neon as a pressure transmitting medium, ambient orthorhombic C2221 phase transforms to orthorhombic Cmcm phase at 4.9?GPa. The high pressure Cmcm phase remains stable up to the highest pressure in the experiment, i.e. 19?GPa. The values of bulk modulus for C2221 and Cmcm phases are 19(2) and 126(4)?GPa, respectively. In contrast to this, under non-hydrostatic pressure conditions, transformation of ambient C2221 phase to Cmcm phase has not observed up to 17.4?GPa. Instead, a new monoclinic phase P21 is observed which contains layers of six coordinated Al/Ga ions separated by less dense five coordinated Al/Ga ions.  相似文献   

11.
Hollow AlPO4‐5 spheres (E‐AP and B‐AP) are synthesized ionothermally in tri‐substituted imidazolium bromide ionic liquids (ILs), that is, 1‐ethyl‐2,3‐dimethylimidazolium bromide and 1‐butyl‐2,3‐dimethylimidazolium bromide, respectively. Moreover, the morphologies of the hollow AlPO4‐5 particles vary with the type of ILs and the amounts of ILs, phosphoric acid, amine, and hydrofluoric acid. The thicknesses of the shells of the hollow spheres are substantially affected by the length of the alkyl chain on the imidazole ring of the ILs. The shell thicknesses significantly increase from 300–500 nm to 4–5 µm as the alkyl chain length increases, and solid AlPO4‐5 spheres (H‐AP) are generated in 1‐hexyl‐2,3‐dimethylimidazolium bromide IL. Furthermore, the experimental results suggest that the formation of hollow AlPO4‐5 spheres in an IL is consistent with Ostwald ripening theory. In addition, compared with ordinary solid AlPO4‐5 (S‐AP) prepared by hydrothermal methods, the hollow E‐AP particles are small and spherical. Moreover, the Co‐loaded hollow AlPO4‐5 (Co/E‐AP) catalyst exhibits excellent catalytic activities in the selective oxidation of tetralin. The reaction conversions are 73.5 and 5.7% over the Co/E‐AP catalyst and Co‐loaded solid AlPO4‐5 (Co/S‐AP) catalyst, respectively, which means that the hollow structure facilitates the mass transfer of the reactants and products in the catalytic reaction.  相似文献   

12.
梁桁楠  马春丽  杜菲  崔啟良  邹广田 《中国物理 B》2013,22(1):16103-016103
The effect of external quasi-hydrostatic pressure on the inverse spinel structure of LiCuVO 4 was studied in this paper. High-pressure synchrotron X-ray diffraction and Raman spectroscopy measurements were carried out at room temperature up to 35.7 and 40.3 GPa, respectively. At a pressure of about 20 GPa, both Raman spectra and X-ray diffraction results indicate that LiCuVO4 was transformed into a monoclinic phase, which remained stable up to at least 35.7 GPa. Upon release of pressure, the high-pressure phase returned to the initial phase. The pressure dependence of the volume of low pressure orthorhombic phase and high-pressure monoclinic phase were described by a second-order Birch-Murnaghan equation of state, which yielded bulk modulus values of B 0 = 197(5) and 232(8) GPa, respectively. The results support the empirical suggestion that the oxide spinels have similar bulk modulus around 200 GPa.  相似文献   

13.
ABSTRACT

The compressibility and effect of pressure on the vibrations of merrillite, Ca9NaMg(PO4)7, were studied by using diamond anvil cell at room temperature combined with in-situ synchrotron X-ray diffraction and Raman spectroscopy up to about 18 and 15?GPa, respectively. The pressure-volume data was fitted by a third-order Birch–Murnaghan equation of state to determine the isothermal bulk modulus as K0 ?=?87.2(32) GPa with pressure derivative K0?=?3.2(4). If K0′?=?4, the isothermal bulk modulus was obtained as 81.6(10) GPa. The axial compressibility was estimated and an axial elastic anisotropy exists since a-axis is less compressible than the c-axis. The Raman frequencies of all observed modes for merrillite continuously increase with pressure, and the pressure dependences of stretching modes (v 3 and v 1) are larger than those of the bending modes (v 4 and v 2) and external modes. The isothermal mode Grüneisen parameters and intrinsic anharmonicity of merrillite were also calculated.  相似文献   

14.
H. Manaka  M. Nishi  I. Yamada 《高压研究》2013,33(3-6):187-192
Abstract

The two-dimensional Heisenberg antiferromagnet (C2H5NH3)2CuCl4 has the ferromagnetic intralayer exchange interaction, while the extremely weak interlayer exchange interaction is antiferromagnetic. Neutron scattering experiments under high pressures have been performed on this compound. We confirm that the spin structure changes around 1~2 GPa from the collinear alignment along the a-axis to a spin-canting one. The weak moment due to the canting is parallel to the c-axis. The results indicate that the ferromagnetic intralayer and the antiferromagnetic interlayer exchange interactions are maintained up to 1~2 GPa. Why the weak ferromagnetic moment along the c-axis occurs is due to a lowering of crystal symmetry by pressure.  相似文献   

15.
Abstract

The condition of the formation of quasicrystal in Al4Mn and Al6Cr under high static pressure has been investigated for the first time. I-phase and T-phase have been observed in electron diffraction experiment. The structures of Al4Mn quenched at about 100 K/s are different under various pressure from 0.95GPa to 4.45GPa. The phase transition from I- and T-phase to crystal phase has also been investigated.  相似文献   

16.
Photoluminescence spectra of Sm2+-doped BaBr2 have been measured under hydrostatic pressures up to 17 GPa at room temperature. In the low pressure range a red-shift of the broad 5d-4f transition of −145 cm−1/GPa is observed. From 5 to 8 GPa a phase mixture of the initial orthorhombic phase and the high-pressure monoclinic phase gives rise to two 5d-4f bands, which are strongly overlapping. Above 8 GPa the crystal is completely transformed to its high-pressure phase where two different Sm2+ sites exist, but only one broad 5d-4f transition is detected. It exhibits a red-shift of −36 cm−1/GPa. In addition, the line shifts of the 5D07FJ (J=0, 1, 2) transitions are investigated. Linear shifts of −19 cm−1/GPa for J=0, 2 and of −13 cm−1/GPa for J=1 are observed in the pressure range from 0 to 5 GPa.  相似文献   

17.
The behavior of Ca2AlFeO5 brownmillerite was studied by in situ synchrotron X-ray diffraction and Raman spectroscopy at 300?K with pressures up to 26.5 and 32.1 GPa, respectively. A reversible structural phase transition was observed. The P–V data were fitted by a third-order Birch–Murnaghan equation of state, and the isothermal bulk modulus was obtained as K0?=?181.9(76) GPa with K0?=?4.4(17). If K0′ was fixed to 4, K0 was obtained as 183.8(20) GPa. Ca2AlFeO5 brownmillerite shows an axial elastic anisotropy since the b-axis is more compressible than a- and c-axis. Combined with previous results, the isothermal bulk modulus and axial compressibility of Ca2AlFeO5 brownmillerite increase with more Al incorporated in the structure. The Raman spectra of Ca2AlFeO5 brownmillerite were analyzed and the pressure coefficients vary from 2.23 to 4.90?cm?1/GPa. The isothermal mode Grüneisen parameters range from 0.83 to 1.77 and the thermal Grüneisen parameter is determined as 1.08(11).  相似文献   

18.
Abstract

At 4.1 GPa LiInSe2 transforms from the β-NaFeO2 - type structure to the NaCl-type structure LiInSe2-hpI (cubic; Fm3m; a=546.4(3)pm, Z=2, D x =5.75g/cm3; 4.1GPa) which remains metastable at normal conditions. Heating to 210°C at 1.8 GPa causes ordering of the cations and a phase transition from LiInSe2-hpI to the α-NaFeO2 - type structure LiInSe2-hpII (rhombohedral; R3m; a=393.4pm, c=1919.7pm, Z=3, D x =5.53g/cm3; 1.8GPa). Heating to 210°C at 0.27 GPa results in a phase transformation from LiInSe2-hpII to the chalcopyrite-type phase LiInSe2-hpIII (tetragonal; 142d; a=580.7(8)pm, c=1181.0(31)pm, Z=4, D x =4.66g/cm3; 0.27 GPa).  相似文献   

19.
Abstract

High pressure x ray absorption spectroscopy (XAS) has been performed up to 29 GPa on crystalline and amorphous GeO2. The modification of the x ray absorption near edge structure (XANES) as well as the variation of the Ge-O distance, indicate that the coordination of Ge changes from 4 to 6 above 6.5 GPa. The transition is confirmed by Raman spectroscopy.  相似文献   

20.
H. Schulz  H. Sowa 《高压研究》2013,33(5-6):661-666
Abstract

A single crystal study on AlPO4 was performed at 2.90 GPa with synchrotron radiation with a wavelength of only 0.54 ?. The diffracted intensity was high enough to measure even weak reflections with sufficient counting statistics. However, the search for the reflections needed to setup the orientation matrix required a lot of beamtime. A feasibility study was carried out using a proportional area counter to reduce this search time. The results demonstrate that such counters can considerably reduce the time needed for the orientation of the crystal and the data collection.

Presented at the IUCr Workshop on ‘Synchrotron Radiation Instrumentation for High Pressure Crystallography’. Daresbury Laboratory 20-21 July 1991  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号