首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Nanofibrillated cellulose offers new technological solutions for the development of paper products. Here, composites of nanofibrillated cellulose (NFC) and Ag nanoparticles (NP) were prepared for the first time via the electrostatic assembly of Ag NP (aqueous colloids) onto NFC. Distinct polyelectrolytes have been investigated as macromolecular linkers in order to evaluate their effects on the building-up of Ag modified NFC and also on the final properties of the NFC/Ag composite materials. The NFC/Ag nanocomposites were first investigated for their antibacterial properties towards S. aureus and K. pneumoniae microorganisms as compared to NFC modified by polyelectrolytes linkers without Ag. Subsequently, the antibacterial NFC/Ag nanocomposites were used as fillers in starch based coating formulations for Eucalyptus globulus-based paper sheets. The potential of this approach to produce antimicrobial paper products will be discussed on the basis of complementary optical, air barrier and mechanical data.  相似文献   

2.

Tissue furnish optimization plays a key role in enhancing tissue properties, making the process cost-effective. Typically, this furnish is composed of a mixture of hardwood eucalyptus fibers (HW) and softwood (SW) fibers, which ensure strength and tissue machine runnability. However, the tissue paper production with the maximization of eucalyptus fibers achieves softer papers at less cost, since SW fibers are often more expensive than HW fibers. From this perspective, this study aims to investigate the effect of micro/nano-fibrillated cellulose (MFC/NFC) as an additive, on structural, softness, strength, and water absorption properties of tissue papers, promoting partial or total removal of SW fibers to produce 100% eucalyptus materials. MFC/NFC was characterized in terms of morphological, chemical, and water interaction properties. The results showed that MFC/NFC presents a high bonding surface area, high carboxyl group content and, when incorporated into tissue furnishes, it promotes strong inter-fiber bonds. This evidence was also supported by SEM image analysis methods and FTIR. Additionally, laboratory tissue handsheets with low basis weight were produced and used in the characterization assays. Overall, the results indicated that MFC/NFC improved strength, at the expense of bulk, porosity, softness, and absorption properties. Compared to typical industrial furnish mixtures (75%HW?+?25%SW), MFC/NFC enhanced the production of bulkier, porous, and softer structures, but with reduced strength and absorption. It was possible to optimize the furnish composition by using fiber modeling to obtain 3D structure computation simulations with predictive capability. The MFC/NFC proved to be a high-quality additive to improve softness and strength properties.

Graphic abstract
  相似文献   

3.
The combined effect of enzymatic treatment (biobeating) and NFC addition on the mechanical and physical properties of a papermaking pulp suspension was investigated. The influence of pH, consistency of pulp and reaction time of the enzyme on the pulp strength was evaluated by measuring the breaking length of paper sheets made thereof. The results showed that the enzymatic treatment improved mechanical properties of fibres without modifying drainability. After biobeating, NFC was added to the enzyme-treated pulps. Mechanical properties were enhanced, obtaining length at break values similar to those observed in commercial printing/writing paper. Opacity remained constant, whereas porosity was gradually reduced as more amount of NFC was added. The presence of NFC also reduced drainability, although it remained at suitable levels for the papermaking industry. The results suggest that the combination of biobeating and NFC addition can be considered as an alternative to mechanical beating.  相似文献   

4.
Nanofibrils (NFC) or microfibrils (MFC) are potential candidates for high filler-loaded papers and board as they are able to compensate for strength loss caused by the filler itself. However, the interaction of nanofibrils and the filler during sheet forming is not yet well understood. The aim here was to examine 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and periodate-chlorite oxidized (DCC) anionic nanofibrils during sheet forming in order to determine their effects on flocculation, filler retention and the strength and optical properties of the handsheets. The experiments were carried out by manufacturing filler-loaded sheets from refined kraft fibres and ground calcium carbonate (GCC) with various added levels of TEMPO and DCC nanofibrils. The results showed that both types of nanofibril caused pronounced agglomeration of the GCC filler, which increased its retention in the paper web. Given the same filler content, the strength properties were the same or slightly better than in a sheet formed without any chemical agent, while light scattering was slightly inferior. Poorer formation seemed to be the explanation for why the increased bonding induced by NFCs was not reflected in obviously better sheet strengths. The physical properties of sheets containing NFC were superior to those of sheets formed with cationic polyacrylamide as a retention aid with the same filler content and level of formation. Thus NFCs seem to be potential retention aids for use in fine paper production instead of traditional polymers.  相似文献   

5.
Liquid ammonia was used to treat films of nanofibrillated cellulose (NFC), trimethylammonium-modified NFC (TMA-NFC), and their composites with vermiculite. Crystal structure, mechanical properties, water vapor permeation and water vapor adsorption of the resulting materials were investigated. Upon treatment, the crystal structure of (TMA-)NFC both in presence and absence of vermiculite changed from cellulose I to III. With the exception of TMA-NFC/vermiculite composites, pronounced effects on the addressed mechanical properties arose after exposure of the materials to ammonia. Furthermore, treatment of composite films with ammonia led to a distinct decrease in water vapor permeation. Remarkably, TMA-NFC/vermiculite composites films show the best water vapor barrier properties, highest tensile strength and highest elastic modulus after treatment with liquid ammonia. This is regarded to be at least partially a consequence of electrostatic attraction between the positively charged ammonium groups in TMA-NFC and the anionic silicate layers of vermiculite. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

6.
Self-organized multilayer films were formed by sequential addition of oppositely charged cellulose I nanoparticles. The all-cellulosic multilayers were prepared via adsorption of cationicially modified cellulose nanofibrils (cat NFC) and anionic short crystalline cellulose (CNC) at pH 4.5 and pH 8.3. The properties and build-up behavior of layer-by-layer-constructed films were studied with microgravimetry (QCM-D) and the direct surface forces in these systems were explored with colloidal probe microscopy to gain information about the fundamental interplay between cat NFC and anionic CNC. The importance of the first layer on the adsorption of the consecutive layers was demonstrated by comparing pure in situ adsorption in the QCM-D with multilayer films made by spin coating the first cationic NFC layer and then subsequently adsorbing the following layers in situ in the QCM-D chamber. Differences in adsorbed amount and viscoelastic behavior were observed between those two systems. In addition, a significant pH dependence of cat NFC charge was found for both direct surface interactions and layer properties. Moreover the underlying cellulose layer in multilayer film was established to influence the surface forces especially at lower pH, where the cat NFC chains extensions were facilitated and overall charge was affected by the cationic counterpart within the layers. This enhanced understanding the effect of charge and structure on the interaction between these renewable nanoparticles is valuable when designing novel materials based on nanocellulose.  相似文献   

7.
This paper demonstrates a way to utilize the rheological properties of high consistency microfibrillated and nanofibrillated cellulose (MFC and NFC) based furnishes for improved dewatering. This is relevant to a new manufacturing platform that is being developed to form composite webs from suitable mixtures of MFC or NFC, traditional pulp fibres and pigments. The studied furnishes were evaluated in the consistencies range of 5–15 % with an MCR 300 rheometer and an immobilization cell. This setup enables us to characterize the rheology of the samples before and during the dewatering process. Classical rheological methods are used to characterise MFC and NFC furnishes. Yield stress as an indicator of the flocculated network strength was found to increase with the consistencies, following the increase in elastic moduli, which indicated a gel-like strongly flocculated matrix. The shear thinning properties of furnishes are observed to follow the Oswald’s rheological model on a wide range of shear rates. It was found that when the MFC and NFC furnishes were dewatered under vacuum conditions, the final solids content was increased with application of shear. This behaviour is more pronounced for furnishes which contained the more swollen NFC (higher WRV, i.e. higher zeta potential). This effect is further exemplified by the change of the complex and dynamic viscosities during the dewatering. The shear rate, the fibre content, and the furnish consistencies were also found to influence the dewatering rate.  相似文献   

8.
The effect of Na bentonite, Ca bentonite, and kaolin fillers on the macrostructure and microstructure of acrylonitrile butadiene rubber, ethylene propylene diene rubber, and their blend (50/50) was studied through electrical and mechanical measurements, as well as with positron annihilation lifetime spectroscopy. The real part of permittivity (ε′), dielectric loss (ε″), and the crosslinking density were found to increase with increasing filler content. The increase of crosslinking density of the blend with increasing amount of fillers reflects a decrease in the equilibrium swelling up to 21.50 wt % compared with that of the unfilled blends. The mechanical investigation showed pronounced increase in the tensile strength, and in elongation at break with the addition of up to 21.50 wt % of filler. In addition, comparing between different fillers showed that the reinforcing effect of Na bentonite is more effective than Ca bentonite and kaolin but the physico‐mechanical of Ca bentonite is less than that for kaolin. The positron annihilation lifetime measurements revealed that the free‐volume properties were strongly affected by the amount and type of filler, in particular, the free‐volume fraction was dramatically decreased with increasing filler content. Furthermore, correlations were made between the free‐volume parameters and both electrical and mechanical properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1825–1838, 2009  相似文献   

9.
This study demonstrates the preparation of a renewable and biocompatible co-cross-linked nanocomposite hydrogel from poly(methyl vinyl ether-co-maleic acid), poly(ethylene glycol) and nanofibrillated cellulose (NFC). The cross-linking reaction was favored by the formation of ester linkages as evidenced by Fourier transform infrared spectroscopy. The increase in gel fraction content of the treated NFC varied from 22 to 85 % which exhibited an increase in degree of chemical cross-linking to form a rigid network with the addition of varying amount of NFC (20–60 %). This increase in gel rigidity influenced gel swelling, showing relatively reduced water uptake ability above 40 % NFC. Rheological measurements indicated the formation of gels with superior mechanical properties.  相似文献   

10.
Nanocellulose is an interesting building block for functional materials and has gained considerable interest due to its mechanical robustness, large surface area and biodegradability. It can be formed into various structures such as solids, films and gels such as hydrogels and aerogels and combined with polymers or other materials to form composites. Mechanical, optical and barrier properties of nanofibrillated cellulose (NFC) and microfibrillated cellulose (MFC) films were studied in order to understand their potential for packaging and functional printing applications. Impact of raw material choice and nanocellulose production process on these properties was evaluated. MFC and NFC were produced following two different routes. NFC was produced using a chemical pretreatment followed by a high pressure homogenization, whereas MFC was produced using a mechanical treatment only. TEMPO-mediated oxidation followed by one step of high pressure (2,000 bar) homogenization seems to produce a similar type of NFC from both hardwood and softwood. NFC films showed superior mechanical and optical properties compared with MFC films; however, MFC films demonstrated better barrier properties against oxygen and water vapor. Both the MFC and NFC films were excellent barriers against mineral oil used in ordinary printing inks and dichlorobenzene, a common solvent used in functional printing inks. Barrier properties against vegetable oil were also found to be exceptionally good for both the NFC and MFC films.  相似文献   

11.
Polyvinyl alcohol (PVOH) and its nanofibrillated cellulose (NFC) reinforced nanocomposites were produced and foamed and its properties—such as the dynamic mechanical properties, crystallization behavior, and solubility of carbon dioxide (CO2)—were evaluated. PVOH was mixed with an NFC fiber suspension in water followed by casting. Transmission electron microscopy (TEM) images, as well as the optical transparency of the films, revealed that the NFC fibers dispersed well in the resulting PVOH/NFC nanocomposites. Adding NFC increased the tensile modulus of the PVOH/NFC nanocomposites nearly threefold. Differential scanning calorimetry (DSC) analysis showed that the NFC served as a nucleating agent, promoting the early onset of crystallization. However, high NFC content also led to greater thermal degradation of the PVOH matrix. PVOH/NFC nanocomposites were sensitive to moisture content and dynamic mechanical analysis (DMA) tests showed that, at room temperature, the storage modulus increased with decreasing moisture content. The solubility of CO2 in the PVOH/NFC nanocomposites depended on their moisture content and decreased with the addition of NFC. Moreover, the desorption diffusivity increased as more NFC was added. Finally, the foaming behavior of the PVOH/NFC nanocomposites was studied using CO2 and/or water as the physical foaming agent(s) in a batch foaming process. Only samples with a high moisture content were able to foam with CO2. Furthermore, the PVOH/NFC nanocomposites exhibited finer and more anisotropic cell morphologies than the neat PVOH films. In the absence of moisture, no foaming was observed in the CO2-saturated neat PVOH or PVOH/NFC nanocomposite samples.  相似文献   

12.
Multilayer membranes prepared via microlayer coextrusion have attracted wide attention due to their unique properties and broad applications. In present study, the foam/film alternating multilayer sheets based on ethylene-vinyl acetate copolymer(EVA) and high-density polyethylene are successfully prepared via microlayer coextrusion. The cells in the sheets are single-cell-array along the foamed EVA layers with uniform cell size. In addition, the effects of layer number and foam relative thickness on morphology, mechanical properties, damping and heat insulation properties are investigated. The cell size decreases significantly with increasing layer number due to the enhanced confine effects. The tensile strength, elongation at break, and heat insulation also increase significantly. However, the mechanical damping properties change little in the observed frequency. Meanwhile, with higher relative thickness of EVA foam, the sheets have lower tensile strength and lower thermal conductivity, while the damping properties are enhanced in a specific frequency scope. The elongation at break of the optimized sample comes to 800% and the thermal conductivity decreases to 61 mW·m~(-1)·K~(-1), which shows high toughness and low thermal conductivity, indicating a possible method for preparing materials with high toughness and heat-insulating properties.  相似文献   

13.
The effect of types of fillers on mechanical properties of rigid polyurethane composite samples was investigated. Polyurethane (PU) composites were prepared using a molasses polyol (MP, a mixture of molasses and polyethylene glycol, Mw=200) diphenylmethane diisocyanate (MDI) and fillers. The following plant particles, bamboo powder, roast bamboo powder, wood meal, coffee grounds, ground coffee bean parchment and cellulose powder, were used as fillers. The mixture of MP and fillers was reacted with MDI by adding an adequate amount of acetone as a solvent. The content of fillers was defined as the ratio of filler weight to total weight of polyol and fillers. The filler content was varied from 10 to 90 wt%. Polyurethane (PU) composites were prepared using fillers with MP. Lengths of major axis and minor axis for each particle regarded as an ellipse were measured using an optical microscope. Averages of diameter and aspect ratio were derived for each plant particle. The relationships between these average values and the mechanical properties, such as strength and elastic modulus, determined by the compression tests were investigated. The effect of filler content was estimated using the apparent volume ratio which is determined as the ratio of the apparent volume of fillers to the reciprocal values of the apparent density of samples. The master curves of the relationships between the specific values of mechanical properties and the apparent volume ratio were obtained. It was found that the compression strength and the elastic modulus for composite samples with different fillers showed maximum values at average aspect ratio around 3. It was also found that the apparent volume ratio, where the mechanical properties showed maximums, decreases with increasing aspect ratio. Using master curves, it is possible to evaluate the mechanical properties of plant particle filled polyurethane composites are described.  相似文献   

14.
A new type of micro/nanocomposite was made by using only micro fibrillated cellulose and inorganic fillers. This composite structure can contain up to 90% fillers being still mechanically stable and flexible. Calendering can be used to produce dense structures with extremely smooth surface. To study the effect of filler shape and type, both kaolin and precipitated calcium carbonate (PCC) based sheets were examined. Microscopy (cross-sectional and surface SEM images) and mechanical and morphological properties, including strength properties, surface roughness and dimensional stability as a function of moisture were analysed. After calendering the surface of the PCC containing sheets was smoother than that of photopaper and in the same level as reference plastic film Mylar A. The dimensional stability of the sheets was clearly better than that of paper sheets. The combination of a good dimensional stability with low surface roughness makes these structures potential for printed electronics applications, in which they could replace oil-based plastic substrates. Suitability for printed electronic applications was tested by inkjet printing conductors with silver nanoparticle ink. The sheet resistances of conductors printed on kaolin based sheets were close to those printed on plastic Mylar A film.  相似文献   

15.
The main objective of this article is to introduce a new natural fiber as a reinforcement in polymers for making composites for lightweight applications. The extraction of golden cane (Chrysalidocarpus lutescens) fiber and the mechanical properties of the fiber-reinforced polyester composites are described. The composites were formulated up to a maximum volume fraction of 0.43, resulting in a mean tensile strength and modulus of 2.13 and 2.26 times and mean flexural strength and modulus of 1.94 and 2.89 times greater than those of plain polyester, respectively, at a higher volume fraction of 0.43. The work of fracture in impact is measured to be 358 J/m. The results of this study indicate that golden cane fibers have potential as reinforcing fillers in plastics in order to produce inexpensive materials with high toughness.  相似文献   

16.
In the present work the evolution of physical and mechanical properties of papers and nanopapers is studied. Handsheets made of eucalyptus fibres reinforced with 0, 25, 50, 75 and 100 wt% of nanofibrillated cellulose (NFC) content were fabricated using a Rapid Köthen-like equipment. The obtained papers and nanopapers were physical- and mechanically-characterized. The results showed a significant increase in density and a reduction of porosity in the samples during their transition from paper to nanopaper; besides, nanopapers were more transparent and smoother than normal papers. These physical changes where more evident with increasing amounts of NFC. Regarding mechanical properties, nanopapers with a 100 wt% content of NFC improved their strength and rigidity in 228 and 317 %, respectively, in comparison with normal papers. The evolution of strength and rigidity from paper to nanopaper was linear in relation to the amount of NFC, which means that the ultimate tensile strength was mainly dependant on nanofibril failure.  相似文献   

17.
Sustainable materials have slowly overtaken the nanofiber research field while the tailoring of their properties and the upscaling for industrial production are some of the major challenges. We report preparation of nanofibers that are bio-based and biodegradable prepared from poly (butylene succinate) (PBS) with the incorporation of nanofibrillated cellulose (NFC) and graphene nanoplatelets (GN). NFC and GN were combined as hybrid filler, which led to the improved morphological structure for electrospun nanofibers. A needleless approach was used for solution electrospinning fabrication of nanofiber mesh structures to promote application scalability. The polymer crystallization process was examined by differential scanning calorimetry (DSC), the thermal stability was evaluated by thermal gravimetric analysis (TGA), while the extensive investigation of the nanofibers structure was carried out with scanning electron microscopy (SEM) and atomic force microscopy (AFM). NFC and GN loadings were 0.5 and 1.0 wt %; while poly (ethylene glycol) (PEG) was employed as a compatibilizer to enhance fillers’ interaction within the polymer matrix. The interactions in the interface of the fillers and matrix components were studied by FTIR and Raman spectroscopies. The hybrid filler approach proved to be most suitable for consistent and high-quality nanofiber production. The obtained dense mesh-based structures could have foreseeable potential application in biomedical field like scaffolds for the tissue and bone recovery, while other applications could focus on filtration technologies and smart sensors.  相似文献   

18.
The scientific publications on nanofibrillated cellulose (NFC) were reviewed in the light of recent developments in the field of characterization of NFC, and the evolving understanding of the material. This led to several insights, which challenged few of the established assumptions with regard to e.g. rheological properties of NFC suspensions, and factors affecting tensile strength and barrier properties of NFC films. The realizations may promote the wider application of nanofibrillated celluloses.  相似文献   

19.
This article describes the preparation of novel aqueous spongy foams that are composed of three-dimensionally distributed wood-fiber networks stabilized with nanofibrillate cellulose (NFC) and/or microfibrillated cellulose (MFC). The free standing aqueous spongy foams were prepared with the entrapment of NFC and/or MFC—stabilized air-in-water (A/W) capillary foams using “gel trapping technique”. The stability of spongy foams could be controlled by manipulating the volume fraction of NFC and/or MFC and a secondary liquid immiscible with the continuous phase of the NFC and/or MFC suspension. Possible morphology and mechanical distribution of NFC and/or MFC within spongy foams were verified with optical microscope, SEM, and functional load-bearing method. Owing to three-dimensionally dispersed wood-fiber structure, ultra-lightweight (0.01–0.06 g/cm3), high porosity (>90%), and microporous (10–80 μm), the NFC and/or MFC reinforced spongy foams, improved compressional strength-vertical direction obviously, from 0.0 to more than 13.78 kPa.  相似文献   

20.
Positron lifetime spectra and Doppler broadening of the annihilation line were measured for samples of carbon black/polyethylene and polypropylene composites with varying amount of the filler. Tensile strength, resistivity, EPR resonance were studied in addition to have the samples better characterized. The decrease in resistivity of samples, accompanied by the worsening of mechanical properties, the drop both in the intensities of Ps lifetime components in the lifetime spectra and in the line-shape parameter values, were observed with increase in the carbon black content. The presence of radicals associated with aromatic structure of the carbon sheets and others associated with the surface oxygen functional groups was established by EPR measurements for the carbon blacks being used as fillers. The carbon black of the highest specific surface area influenced the measured characteristics the most.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号