首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an analysis of the instabilities engendered by van der Waals forces in bilayer systems composed of a soft elastic film (<10 microm) and a thin (<100 nm) viscous liquid film. We consider two configurations of such systems: (a) Confined bilayers, where the bilayer is sandwiched between two rigid substrates, and (b) free bilayers, where the viscous film is sandwiched between a rigid substrate and the elastic film. Linear stability analysis shows that the time and length scales of the instabilities can be tuned over a very wide range by changing the film thickness and the material properties such as shear modulus, surface tension, and viscosity. In particular, very short wavelengths comparable to the film thickness can be obtained in bilayers, which is in contrast to the instability wavelengths in single viscous and elastic films. It is also shown that the instabilities at the interfaces of the free bilayers are initiated via an in-phase "bending" mode rather than out-of-phase "squeezing" mode. The amplitudes of deformations at both the elastic-air and elastic-viscous interfaces become more similar as the elastic film thickness decreases and its modulus increases. These findings may have potential applications in the self-organized patterning of soft materials.  相似文献   

2.
3.
The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.  相似文献   

4.
We analyse the effect of a Langmuir-Blodgett (LB) multilayer on the surface properties of a nematic liquid crystal (NLC). We show that the easy axis of the LB-NLC interface coincides with that of the LB-solid surface interface. On the contrary, the effective anchoring energy of the LB-NLC interface is lower than that associated with the LB-solid substrate interface. We show in a first approximation that the anchoring energy characterizing the NLC may be separated into three contributions: one connected with the interaction between the LB film and the solid substrate, one due to the direct LB-NLC interaction and the other one having an elastic origin. Nevertheless, to be more precise, one has to consider also the term associated with the interaction energy between the NLC and the substrate, which is screened by the LB film. The elastic contribution is of the order of the elastic constant of the LB film over the thickness of the multilayer. This quantity is estimated to be of the order of 10-2-10-1 erg cm-2, as experimentally observed. Possible extensions of our model are also discussed.  相似文献   

5.
Wetting and dewetting of solid surfaces by oily fluids were investigated in terms of the stability of the liquid film formed between an air bubble and the solid surface. With the objective of understanding how molecules with low polarity but relatively complex molecular structure behave at the solid/liquid interface, three liquid triglycerides with different chain length and saturation were chosen, namely, tributyrin, tricaprylin, and triolein. Tributyrin and tricaprylin exist in milkfat while triolein is present in vegetable oils. The stability of the liquid films may be inferred from the shape of the disjoining pressure isotherms, which represent the dependence of the disjoining pressure on the film thickness. Disjoining pressure isotherms for films of the three triglycerides on hydrophilic and hydrophobic glasses were obtained using a recently developed apparatus, based on the interferometric technique. The experimental curves are compared with the theoretical predictions of London-Hamaker. The deviations between theory and experiment are interpreted in terms of a structural component of the disjoining pressure. All triglycerides form metastable films on both hydrophilic and hydrophobic glasses which means that for disjoining pressures higher than a critical value, pi(c), a wetting transition occurs and the film ruptures. The mechanisms for film rupture are discussed and a correlation between film stability and the apolar (Lifshitz-van der Waals) and the polar components of the spreading coefficient is proposed.  相似文献   

6.
A molecular dynamics study has been performed on a liquid film sheared between moving solid walls. Thermal phenomena that occur in the Couette-like flow were examined, including energy conversion from macroscopic flow energy to thermal energy, i.e., viscous heating in the macroscopic sense, and heat conduction from the liquid film to the solid wall via liquid-solid interfaces. Four types of crystal planes of fcc lattice were assumed for the surface of the solid wall. The jumps in velocity and temperature at the interface resulting from deteriorated transfer characteristics of thermal energy and momentum at the interface were observed. It was found that the transfer characteristics of thermal energy and momentum at the interfaces are greatly influenced by the types of crystal plane of the solid wall surface which contacts the liquid film. The mechanism by which such a molecular scale structure influences the energy transfer at the interface was examined by analyzing the molecular motion and its contribution to energy transfer at the solid-liquid interface.  相似文献   

7.
We present molecular-dynamics results for the squeezing of octane (C8H18) between two approaching solid elastic walls with different wetting properties. The interaction energy between the octane bead units and the solid walls is varied from a very small value (1 meV), corresponding to a nonwetting surface with a very large contact angle (nearly 180 degrees), to a high value (18.6 meV) corresponding to complete wetting. When at least one of the solid walls is wetted by octane we observe well defined molecular layers develop in the lubricant film when the thickness of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous, thermally activated changes in the number n of lubricant layers (n-->n-1 layering transitions). With increasing interaction energy between the octane bead units and the solid walls, the transitions from n to n-1 layers occur at higher average pressure. This results from the increasing activation barrier to nucleate the squeeze-out with increasing lubricant-wall binding energy (per unit surface area) in the contact zone. Thus, strongly wetting lubricant fluids are better boundary lubricants than the less wetting ones, and this should result in less wear. We analyze in detail the effect of capillary bridge formation (in the wetting case) and droplets formation (in the nonwetting case) on the forces exerted by the lubricant on the walls. For the latter case small liquid droplets may be trapped at the interface, resulting in a repulsive force between the walls during squeezing, until the solid walls come into direct contact, where the wall-wall interaction may be initially attractive. This effect is made use of in some practical applications, and we give one illustration involving conditioners for hair care application.  相似文献   

8.
To unravel molecular motion within confined liquids, we have combined a surface forces apparatus (SFA) with a highly sensitive fluorescence microscope. Details of our setup including important modifactions to enable the tracking of single dye molecules within nanometer thin confined liquid films are presented. The mechanical and optical performance of our setup is discussed in detail. For a load of 20 mN we observed a circular-shaped contact region (d approximately 300 microm), which results in a confining pressure of about 280 kPa. First experiments on liquid films of tetrakis(2-ethylhexoxy)silane (TEHOS) doped with rhodamine B demonstrated the ability to track single dye molecules within the confining gap of a SFA. The mean diffusion constant was independent of the liquid film thickness of approximately 3x10(-8) cm2/s and thus 10 times smaller than the diffusion constant of rhodamine B in bulk TEHOS. This points to the existence of a thin interface layer with slower molecular dynamics and an attractive potential parallel to the solid surface trapping molecules in this interface region.  相似文献   

9.
We study the phenomenon of debonding in a thin soft elastic film sandwiched between two rigid plates as one of the plates is brought into intimate contact and then pulled away from contact proximity by application of a normal force. Nonlinear simulations based on minimization of total energy (composed of stabilizing elastic strain energy and destabilizing adhesive interaction energy) are employed to address the problems of contact hysteresis, cavitation, crack morphology, variation of contact area, snap-off distance, pull-off force, work done, and energy loss. Below a critical distance (d(c)) upon approach, simulations show the formation of columnar structures and nonrandom, regularly arranged nanocavities at the soft interface at a length scale of approximately 3h (h being the thickness of the film). The persistence of such instability upon withdrawal (distance >d(c)) indicates a contact hysteresis, which is caused by an energy barrier that separates the metastable states of the patterned configuration and the global minimum state of the flat film. The energy and the pull-off force are found to be nonequilibrium and nonunique properties depending on the initial contact, defects, noise, etc. Three broad pathways of debonding leading to adhesive failure of the interface, depending on the stiffness of the film, step size of withdrawal, and the imposed noise, are identified: a catastrophic column collapse mode, a peeling mode involving a continuous decrease in the contact area, and a column splitting mode. The first two modes are caused by a very high stress concentration near the cavity edges. These metastable patterned configurations engender pull-off forces that are orders of magnitude smaller than that required to separate two flat surfaces from contact.  相似文献   

10.
We discuss instabilities exhibited by free surface nematic liquid crystal (NLC) films of nanoscale thickness deposited on solid substrates, with a focus on surface instabilities that lead to dewetting. Such instabilities have been discussed extensively; however, there is still no consensus regarding the interpretation of experimental results, appropriate modeling approaches, or instability mechanisms. Instabilities of thin NLC free surface films are related to a wider class of problems involving dewetting of non-Newtonian fluids. For nanoscale films, the substrate–film interaction, often modeled by a suitable disjoining pressure, becomes relevant. For NLCs, one can extend the formulation to include the elastic energy of the NLC film, leading to an ‘effective’ disjoining pressure, playing an important role in instability development. Focusing on thin film modeling within the framework of the long-wave asymptotic model, we discuss various instability mechanisms and outline problems where new research is needed.  相似文献   

11.
The forces acting between nonpolar surfaces coated with the nonionic surfactant n-dodecyl-beta-D-maltoside (beta-C(12)G(2)) were investigated at concentrations below and above the critical micelle concentration. The long-range and adhesive forces were measured with a bimorph surface force apparatus (MASIF). It was found that the effect of hydrodynamic interactions had to be taken into account for an accurate determination of the short-range static interactions. The results were compared with disjoining pressure versus thickness curves that were obtained earlier with a thin film pressure balance (TFPB). This comparison led to the conclusion that the charges observed at the air-water interface are not due to charged species present in the surfactant sample. In addition, it was observed that the stability of thin liquid films crucially depends on the surfactant's bulk concentration (c) and thus on the packing density in the adsorbed layer. The force barrier preventing removal of the surfactant layer from between two solid-liquid interfaces increases with increasing c, while for foam films it is the stability of the Newton black film that increases with c. Finally, the results obtained for beta-C(12)G(2) were compared with those obtained for the homologue n-decyl-beta-d-maltoside (beta-C(10)G(2)) as well as with those obtained for nonionic surfactants with polyoxyethylene moieties as polar groups.  相似文献   

12.
13.
The thermodynamic stability of thin films of the perfluoropolyether (PFPE) Z-Tetraol, as a function of molecular weight, on amorphous nitrogenated carbon, CNx, is investigated. An optical surface analyzer is used to image the autophobic dewetting of the Z-Tetraol films. Film dewetting results when the PFPE film thickness applied to the CNx surface exceeds a critical value. This critical dewetting thickness is identified as the monolayer thickness of the adsorbed PFPE film via measurements of the changes in the surface energy as a function of lubricant film thickness. The observed dewetting coincides with the film thickness at which the disjoining pressure goes to zero. The critical dewetting thickness is dependent on the PFPE molecular weight.  相似文献   

14.
The nonlinear evolution of thin liquid films dewetting near soft elastomeric layers is examined in this work. Evolution equations are derived by applying the lubrication approximation and assuming that van der Waals forces in the liquid cause the dewetting and that the solid can be described as a linear viscoelastic material. Two cases are examined: (i) a liquid layer resting on an elastomer bounded from below by a rigid substrate, and (ii) an elastomer overlying a thin liquid film bounded from below by a rigid substrate. Linear stability analysis is carried out to obtain asymptotic relations which are then compared against solutions of the full characteristic equations. In the liquid-on-solid case, numerical solutions of the evolution equations show that van der Waals forces cause thinning of the liquid film and thickening of the elastomeric solid beneath film depressions. Inclusion of a short-range repulsive force suggests that regular patterns may form in which ridges of fluid rest on depressions in the solid. In the solid-on-liquid case, the van der Waals forces cause the solid layer to break up before the liquid film can dewet. The results presented here support the idea that the dewetting of thin liquid films might be exploited to create topographically patterned surfaces on soft polymeric solids.  相似文献   

15.
Hydroxyl radical at the air-water interface   总被引:1,自引:0,他引:1  
Interaction of the hydroxyl radical with the liquid water surface was studied using classical molecular dynamics computer simulations. From a series of scattering trajectories, the thermal and mass accommodation coefficients of OH on liquid water at 300 K were determined to be 0.95 and 0.83, respectively. The calculated free energy profile for transfer of OH across the air-water interface at 300 K exhibits a minimum in the interfacial region, with the free energy of adsorbtion (DeltaGa) being about 1 kcal/mol more negative than the hydration free energy (DeltaGs). The propensity of the hydroxyl radical for the air-water interface manifests itself in partitioning of OH radicals between the bulk water and the surface. The enhancement of the surface concentration of OH relative to its concentration in the aqueous phase suggests that important OH chemistry may be occurring in the interfacial layer of water droplets, aqueous aerosol particles, and thin water films adsorbed on solid surfaces. This has profound consequences for modeling heterogeneous atmospheric chemical processes.  相似文献   

16.
The mechanism that controls bubble coalescence in electrolyte solutions remains unresolved. The problem is difficult as sensitive dynamic thin film processes are critical. Here we discuss the relationship between film dynamics, specific-ion effects and the combining rules that codify electrolyte effects on bubble coalescence. The relationship with Hofmeister effects is explored, revealing that these very different manifestations of specific ion effects ultimately have the same origin, being the interfacial positioning of ions, which for the air–water interface correlates with the empirically derived α and β assignments used in the combining rules. Ion hydration is important as it strongly influences the interfacial positioning of ions and therefore ultimately bubble coalescence, however dynamic events determine if a collision results in coalescence and therefore we conclude that hydration forces play no role in bubble coalescence in electrolyte solutions.  相似文献   

17.
The stability of partially mobile draining thin liquid films with respect to axisymmetric fluctuations was studied. The material properties of the interfaces (Gibbs elasticity, surface and bulk diffusions) were taken into account. When studying the long wave stability of films, the coupling between the drainage and perturbation flows was considered and the lubrication approximation was applied. Two types of wave modes were examined: radially-bounded and unbounded waves. The difference between the thickness of loss of stability, h(st), the transitional thickness, h(tr), at which the critical wave causing rupture becomes unstable, and the critical thickness, h(cr), when the film ruptures, is demonstrated. Both the linear and the non-linear theories give h(st) > h(tr) > h(cr). The numerical results show that the interfacial mobility does not significantly influence the thickness of the draining film rupture. The interfacial tension and the disjoining pressure are the major factors controlling the critical thickness. The available experimental data for critical thicknesses of foam and emulsion films show excellent agreement with the theoretical predictions. The important role of the electromagnetic retardation term in the van der Waals interaction is demonstrated. Other published theories of the film stability are discussed.  相似文献   

18.
A generalized formalism for the rupture of a nondraining thin film on a solid support due to imposed random thermal and mechanical perturbations, modeled as a Gaussian white noise, is presented. The evolution of amplitude of perturbation is described by a stochastic differential equation. The average film rupture time is the average time for the amplitude of perturbation to equal to the film thickness and is calculated by employing a first passage time analysis for different amplitudes of imposed perturbations, wavenumbers, film thickness, van der Waals and electrostatic interactions and surface tensions. The results indicate the existence of an optimum wavenumber at which the rupture time is minimum. A critical film thickness is identified based on the sign of the disjoining pressure gradient, below which the film is unstable in that the rupture time is very small. The calculated values of rupture time as well as the optimum wavenumber in the present analysis agree well with the results of linear stability analysis for immobile as well as completely mobile gas-liquid film interfaces. For stable films, the rupture time is found to increase dramatically with film thickness near the critical film thickness. As expected, the average rupture time was found to be higher for smaller amplitudes of imposed perturbations, larger surface potentials, larger surface tensions and smaller Hamaker constants.  相似文献   

19.
The liquid wetting and dewetting of solids are ubiquitous phenomena that occur in everyday life. Understanding the nature of these phenomena is beneficial for research and technological applications. However, despite their importance, the phenomena are still not well understood because of the nature of the substrate's surface energy non-ideality and dynamics. This paper illustrates the mechanisms and applications of liquid wetting and dewetting on hydrophilic and hydrophobic substrates. We discuss the classical understanding and application of wetting and film stability criteria based on the Frumkin–Derjaguin disjoining pressure model. The roles of the film critical thickness and capillary pressure on the film instability based on the disjoining pressure isotherm are elucidated, as are the criteria for stable and unstable wet films. We consider the film area in the model for the film stability and the applicable experiments. This paper also addresses the two classic film instability mechanisms for suspended liquid films based on the conditions of the free energy criteria originally proposed by de Vries (nucleation hole formation) and Vrij–Scheludko (capillary waves vs. van der Waals forces) that were later adapted to explain dewetting. We include a discussion of the mechanisms of nanofilm wetting and dewetting on a solid substrate based on nanoparticles' tendency to form a 2D layer and 2D inlayer in the film under the wetting film's surface confinement. We also present our view on the future of wetting–dewetting modeling and its applications in developing emerging technologies. We believe the review and analysis presented here will benefit the current and future understanding of the wetting–dewetting phenomena, as well as aid in the development of novel products and technologies.  相似文献   

20.
Ellipsometry has ‘come of age’ as a technique for the analysis of problems related to colloid and interface science. It has advanced far beyond applications of measuring film thickness or optical constants — although these remain important uses. Studies of the structure of polymers at the solid/liquid interface have been advanced significantly by the realisation of Fourier transform ellipsometry. Another important achievement has been the calibrated measurement of the dynamic surface excess at the flowing surface of a liquid jet. The uses of ellipsometry to study critical adsorption in binary liquids and to measure the width of liquid/liquid interfaces are also noteworthy. An important development is the use of infrared — rather than visible — light, which opens up numerous possibilities for the simultaneous structural and chemical interrogation of interfaces non-invasively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号