首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
In this paper, we consider an initial‐value problem for Burgers' equation with variable coefficients where x and t represent dimensionless distance and time, respectively, and , are given functions of t. In particular, we consider the case when the initial data have algebraic decay as , with as and as . The constant states and are problem parameters. Two specific initial‐value problems are considered. In initial‐value problem 1 we consider the case when and , while in initial‐value problem 2 we consider the case when and . The method of matched asymptotic coordinate expansions is used to obtain the large‐t asymptotic structure of the solution to both initial‐value problems over all parameter values.  相似文献   

2.
In this paper, we consider an initial‐value problem for Burgers' equation with variable coefficients where x and t represent dimensionless distance and time, respectively, while , are given continuous functions of t ( > 0). In particular, we consider the case when the initial data has algebraic decay as , with as and as . The constant states and are problem parameters. We focus attention on the case when (with ) and . The method of matched asymptotic coordinate expansions is used to obtain the large‐t asymptotic structure of the solution to the initial‐value problem over all parameter values.  相似文献   

3.
4.
Infinite asymptotic expansions are derived for the solutions to the second-order linear difference equation where p and q are integers, a(n) and b(n) have power series expansions of the form for large values of n, and a0 ≠ 0, b0 ≠ 0. Recurrence relations are also given for the coefficients in the asymptotic solutions. Our proof is based on the method of successive approximations. This paper is a continuation of an earlier one, in which only the special case p ≤ 0 and q = 0 is considered.  相似文献   

5.
Consider the boundary value problem where β ? 0, τ ? 0. We are concerned with a mathematically rigorous numerical study of the number of solutions in any bounded portion of the positive quadrant (τ ? 0, β ? 0) of the τ, β plane. These correct computational results may then be matched with asymptotic (β→∞, τ ? 0) results developed earlier. These numerical results are based on the development of a posteriori error estimates for the numerical solution of an associated initial-value problem and a priori bounds on .  相似文献   

6.
As in the case of soliton PDEs in 2+1 dimensions, the evolutionary form of integrable dispersionless multidimensional PDEs is nonlocal, and the proper choice of integration constants should be the one dictated by the associated inverse scattering transform (IST). Using the recently made rigorous IST for vector fields associated with the so‐called Pavlov equation , in this paper we establish the following. 1. The nonlocal term arising from its evolutionary form corresponds to the asymmetric integral . 2. Smooth and well‐localized initial data evolve in time developing, for , the constraint , where . 3. Because no smooth and well‐localized initial data can satisfy such constraint at , the initial () dynamics of the Pavlov equation cannot be smooth, although, because it was already established, small norm solutions remain regular for all positive times. We expect that the techniques developed in this paper to prove the above results should be successfully used in the study of the nonlocality of other basic examples of integrable dispersionless PDEs in multidimensions.  相似文献   

7.
The solutions of the equation are discussed in the limit ρ → 0. The solutions which oscillate about ? |t| as t → ∞ have asymptotic expansions whose leading terms are where Ã+, , Ã?, and are constants. The connection problem is to determine the asymptotic expansion at + ∞. In other words, we wish to find (Ã+, ) as functions of Ã? and The nonlinear solutions with ñ not small are analyzed by using the method of averaging. It is shown that this method breaks down for small amplitudes. In this case a solution can be obtained on [0, ∞) as a small amplitude perturbation about the exact nonoscillating solution W(t) whose asymptotic expansion is This is a solution of (1) which corresponds to Ã+ ≡ 0 in (2). A quantity which determines the scale of the small amplitude response is ?W'(0). This quantity is found to be exponentially small. The determination of this constant is shown to reduce to a solution of the equation for the first Painlevé transcendent. The asymptotic behavior of the required solution is determined by solving an integral equation.  相似文献   

8.
In this paper, we give new characterizations for the eigenvalues of the prolate wave equation as limits of the zeros of some families of polynomials: the coefficients of the formal power series appearing in the solutions near 0, 1, or ∞ (in the variables , or , respectively). The result, which seems to be true for all values of the parameter τ, according to our numerical experiments, is here proved for small values of the parameter τ.  相似文献   

9.
In this paper, we study the second‐order perturbed Hamiltonian systems where is a parameter, is positive definite for all but unnecessarily uniformly positive definite for , and W is either asymptotically quadratic or superquadratic in x as . Based on variational methods, we prove the existence of at least two nontrivial homoclinic solutions for the above system when small enough.  相似文献   

10.
We study the Hankel determinants associated with the weight where , , , is analytic in a domain containing [ ? 1, 1] and for . In this paper, based on the Deift–Zhou nonlinear steepest descent analysis, we study the double scaling limit of the Hankel determinants as and . We obtain the asymptotic approximations of the Hankel determinants, evaluated in terms of the Jimbo–Miwa–Okamoto σ‐function for the Painlevé III equation. The asymptotics of the leading coefficients and the recurrence coefficients for the perturbed Jacobi polynomials are also obtained.  相似文献   

11.
In this paper, we study the uniform asymptotics of the Meixner‐Pollaczek polynomials with varying parameter as , where A > 0 is a constant. Two asymptotic expansions are obtained, which hold uniformly for z in two overlapping regions which together cover the whole complex plane. One involves parabolic cylinder functions, and the other is in terms of elementary functions only. Our approach is based on the steepest descent method for oscillatory Riemann‐Hilbert problems first introduced by Deift and Zhou [1].  相似文献   

12.
Exact N-Wave solutions for the generalized Burgers equation where j, α, β, and γ are nonnegative constants and n is a positive integer, are obtained. These solutions are asymptotic to the (linear) old-age solution for large time and extend the validity of the latter so as to cover the entire time regime starting where the originally sharp shock has become sufficiently thick and the viscous effects are felt in the entire N wave.  相似文献   

13.
In this paper, we derive a new representation for the incomplete gamma function, exploiting the reformulation of the method of steepest descents by Howls 1992. Using this representation, we obtain numerically computable bounds for the remainder term of the asymptotic expansion of the incomplete gamma function with large a and fixed positive λ, and an asymptotic expansion for its late coefficients. We also give a rigorous proof of Dingle's formal result regarding the exponentially improved version of the asymptotic series of .  相似文献   

14.
In this paper, we discuss Airy solutions of the second Painlevé equation (PII) and two related equations, the Painlevé XXXIV equation () and the Jimbo–Miwa–Okamoto σ form of PII (SII), are discussed. It is shown that solutions that depend only on the Airy function have a completely different structure to those that involve a linear combination of the Airy functions and . For all three equations, the special solutions that depend only on are tronquée solutions, i.e., they have no poles in a sector of the complex plane. Further, for both and SII, it is shown that among these tronquée solutions there is a family of solutions that have no poles on the real axis.  相似文献   

15.
The novel nonlinear dispersive Gross–Pitaevskii (GP) mean‐field model with the space‐modulated nonlinearity and potential (called GP equation) is investigated in this paper. By using self‐similar transformations and some powerful methods, we obtain some families of novel envelope compacton‐like solutions spikon‐like solutions to the GP equation. These solutions possess abundant localized structures because of infinite choices of the self‐similar function . In particular, we choose as the Jacobi amplitude function and the combination of linear and trigonometric functions of space x so that the novel localized structures of the GP(2, 2) equation are illustrated, which are much different from the usual compacton and spikon solutions reported. Moreover, it is shown that GP(m, 1) equation with linear dispersion also admits the compacton‐like solutions for the case and spikon‐like solutions for the case .  相似文献   

16.
Initial‐boundary value problems for the coupled nonlinear Schrödinger equation on the half‐line are investigated via the Fokas method. It is shown that the solution can be expressed in terms of the unique solution of a matrix Riemann–Hilbert problem formulated in the complex k‐plane, whose jump matrix is defined in terms of the matrix spectral functions and that depend on the initial data and all boundary values, respectively. If there exist spectral functions satisfying the global relation, it can be proved that the function defined by the above Riemann–Hilbert problem solves the coupled nonlinear Schrödinger equation and agrees with the prescribed initial and boundary values. The most challenging problem in the implementation of this method is to characterize the unknown boundary values that appear in the spectral function . For a particular class of boundary conditions so‐called linearizable boundary conditions, it is possible to compute the spectral function in terms of and given boundary conditions by using the algebraic manipulation of the global relation. For the general case of boundary conditions, an effective characterization of the unknown boundary values can be obtained by employing perturbation expansion.  相似文献   

17.
The asymptotic Dirichlet-to-Neumann (D-N) map is constructed for a class of scalar, constant coefficient, linear, third-order, dispersive equations with asymptotically time/periodic Dirichlet boundary data and zero initial data on the half-line, modeling a wavemaker acting upon an initially quiescent medium. The large time t $t$ asymptotics for the special cases of the linear Korteweg-de Vries and linear Benjamin–Bona–Mahony (BBM) equations are obtained. The D-N map is proven to be unique if and only if the radiation condition that selects the unique wave number branch of the dispersion relation for a sinusoidal, time-dependent boundary condition holds: (i) for frequencies in a finite interval, the wave number is real and corresponds to positive group velocity, and (ii) for frequencies outside the interval, the wave number is complex with positive imaginary part. For fixed spatial location x $x$ , the corresponding asymptotic solution is (i) a traveling wave or (ii) a spatially decaying, time-periodic wave. The linearized BBM asymptotics are found to quantitatively agree with viscous core-annular fluid experiments.  相似文献   

18.
We study here the initial value problem for a two‐dimensional Korteweg–de Vries (KdV) equation, first derived by Calogero and Bogoyavlenskii, by means of the inverse scattering transform. The dynamics of the discrete spectrum of an associated Schrödinger operator is far richer than that of KdV equation. Even for optimal eigenvalues, generic smooth solutions may develop shocks with multiple branches and/or cusp singularities in finite time. However, evolution may move poles of the transmission coefficient off the imaginary axis, destroy or even create them. We characterize conditions to prevent these pathologies before explosion time and describe ample classes of solutions, corresponding to both continuous and discrete spectrum. We also find that in certain conditions new eigenvalues might be created; in these cases a minimal set of initial spectral data must incorporate additionally the transmission coefficient on the entire plane. The previous results are applied to describe the Cauchy problem corresponding to initial data combinations of delta terms and derivatives and show that for long time the delta singularity may persist or be smoothed to a cusp‐discontinuity. Finally, we give conditions under which the evolution is reduced to the classical KdV.  相似文献   

19.
Recently, a number of nonlocal integrable equations, such as the ‐symmetric nonlinear Schrödinger (NLS) equation and ‐symmetric Davey–Stewartson equations, were proposed and studied. Here, we show that many of such nonlocal integrable equations can be converted to local integrable equations through simple variable transformations. Examples include these nonlocal NLS and Davey–Stewartson equations, a nonlocal derivative NLS equation, the reverse space‐time complex‐modified Korteweg–de Vries (CMKdV) equation, and many others. These transformations not only establish immediately the integrability of these nonlocal equations, but also allow us to construct their Lax pairs and analytical solutions from those of the local equations. These transformations can also be used to derive new nonlocal integrable equations. As applications of these transformations, we use them to derive rogue wave solutions for the partially ‐symmetric Davey–Stewartson equations and the nonlocal derivative NLS equation. In addition, we use them to derive multisoliton and quasi‐periodic solutions in the reverse space‐time CMKdV equation. Furthermore, we use them to construct many new nonlocal integrable equations such as nonlocal short pulse equations, nonlocal nonlinear diffusion equations, and nonlocal Sasa–Satsuma equations.  相似文献   

20.
This paper shows that a special class of smooth nonlinear oscillators, called bisuperlinear, has a family of adiabatically symmetric solutions. This was motivated by a problem studied in sloshing water waves. A potential application of the work is to compute the nontrivial leading order term of the adiabatic invariants for a certain type of nonlinear nearly periodic Hamiltonian systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号