首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Forty-one patients with suspected cervical spine disorders were studied using multislice gradient echo imaging (GE) technique, with a 1.5-T system. The images were compared to cardiac-gated spin echo (CGSE) images in the diagnosis of suspected cord and spinal disorders. Images were graded for ability to detect cord lesion, cord-CSF contrast, CSF-bone contrast and contrast between CSF and extradural abnormality. The signal-to-noise ratio and contrast-to-noise ratio were used to compare images. There was 44% decrease in contrast between cord lesion and normal cord on GE when compared to CGSE, except for spinal cord hemorrhage. There was a 40% improvement between bone and CSF contrast on GE compared to CGSE. GE images were significantly better qualitatively as well as quantitatively in the detection of extradural lesions. This effect was more marked in axial plane where CGSE images are extremely suboptimal. CGSE images are better than GE for spinal cord lesions, while GE are superior in the diagnosis of degenerative disease in the cervical spine.  相似文献   

2.
3.
The performance of T(2)-weighted spin-echo version of echo planar imaging (SE_EPI), conventional spin echo (SE) and fat-suppressed turbo spin-echo (TSE_SPIR) sequences for the detection of focal liver lesions was evaluated. Twenty patients that were included in our study, had CT examinations prior to the MR study and were scheduled for surgery for removal of liver lesions. All patients had intraoperative sonographic examinations. Qualitative and quantitative analysis of the images was performed. Overall image quality of SE_EPI sequences was better than SE (p<0.001) and similar to TSE_SPIR sequences. There were fewer motion and ghost artifacts on SE_EPI and TSE_SPIR images compared to SE images (p<0.001). Susceptibility artifacts were statistically equivalent on SE_EPI and SE images (p<0.001) while chemical shift artifacts were equally observed on SE and SE_EPI sequences. Overall image quality of EPI-SE and TSE_SPIR sequences was better compared to SE sequences. There was no significant difference in the number of lesions detected by each of the three sequences. Quantitative analysis showed that liver/lesion contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of liver, lesion, spleen was higher on TSE_SPIR sequences (p<0.001) while SE_EPI and SE sequences showed non-significant differences (p>0.05). SE_EPI sequences of the liver resulted in fewer artifacts and shorter acquisition times than SE sequences. They provide a diagnostic performance similar to TSE_SPIR and better than that of SE sequences.  相似文献   

4.
PurposeTo improve the signal-to-noise ratio (SNR) and image sharpness for whole brain isotropic 0.5 mm three-dimensional (3D) T1 weighted (T1w) turbo spin echo (TSE) intracranial vessel wall imaging (IVWI) at 3 T.MethodsThe variable flip angle (VFA) method enables useful optimization across scan efficiency, SNR and relaxation induced point spread function (PSF) for TSE imaging. A convolutional neural network (CNN) was developed to retrospectively enhance the acquired TSE image with PSF blurring. The previously developed VFA method to increase SNR at the expense of blur can be combined with the presented PSF correction to yield long echo train length (ETL) scan while the acquired image remains high SNR and sharp. The overall approach can enable an optimized solution for accelerated whole brain high-resolution 3D T1w TSE IVWI. Its performance was evaluated on healthy volunteers and patients.ResultsThe PSF blurred image acquired by a long ETL scan can be enhanced by CNN to restore similar sharpness as a short ETL scan, which outperforms the traditional linear PSF enhancement approach. For accelerated whole brain IVWI on volunteers, the optimized isotropic 0.5 mm 3D T1w TSE sequence with CNN based PSF enhancement provides sufficient flow suppression and improved image quality. Preliminary results on patients further demonstrated its improved delineation for intracranial vessel wall and plaque morphology.ConclusionThe CNN enhanced VFA TSE imaging enables an overall image quality improvement for high-resolution 3D T1w IVWI, and may provide a better tradeoff across scan efficiency, SNR and PSF for 3D TSE acquisitions.  相似文献   

5.
The purpose of this study was to develop a multi-shot dual-echo breathhold fast spin echo technique (DFSE) and compare it with conventional spin echo (T2SE) for T(2)-weighted MR imaging of liver lesions. The DFSE acquisition (EffTE1/EffTE2/TR = 66/143/2100 ms) imaged 5 sections per 17 s breathhold. T2SE imaging (TE1/TE2/TR = 60/120/2500 ms) required 16:55 (min:s) for 14 sections. Both techniques used a receive-only phased-array abdominal multicoil and provided 192 x 256 effective resolution. The results showed first and second echo relative DFSE/T2SE contrast values for 27 representative lesions (15 consecutive patients) were 1.08 +/- 0.05 and 1.16 +/- 0.09 (mean +/- STD mean), respectively. Corresponding CNR values were 1.12 +/- 0.09 and 0.97 +/- 0.12. Overall DFSE was comparable-to-superior to T2SE for lesion sizing and image artifact. DFSE lesion detection was inferior to T2SE's in several patient studies because of decreased conspicuity of lesions located near multicoil edges and because of poor breathhold-to-breathhold reproducibility and lack of breathholding. However both DFSE (and T2SE) provided lesion detection rated to be of diagnostic quality for all patient studies. In conclusion, we found that DFSE provides diagnostically useful dual-echo T(2)-weighted MR liver images in a greatly decreased acquisition time.  相似文献   

6.
7.
Optimal angle, fast repeat time, gradient field echo imaging techniques such as FISP (Fast Imaging with Steady Precession) and FLASH (Fast Low Angle Shot) often fail to discriminate disease from healthy tissue for two main reasons. First, T1 and T2 of the affected tissue may increase such that the ratio of T1 to T2 remains nearly unchanged, hence there is no contrast change with FISP. Second, T2 weighted gradient field echo images suffer severely from T2* signal and resolution loss leading to a reduction in C/N. Although FLASH imaging with two separate angles can, in principle, extract the longer T1 tumors, contrast is often not good. To overcome the inhomogeneity and contrast problems, we have implemented a FAst optimal angle spin-echo sequence with a short TE(FATE). For the first echo, FATE has the same contrast properties as FLASH with a slight decrease in signal intensity. The advantage is that the intensity of the signal does not suffer from T2* signal decay, hence improved contrast and disease detection via T2 weighted FATE images is possible. Contrast-to-noise in lesion detection is also considered for CE FAST (Contrast Enhanced Fast), a T2-weighted version of FISP, and HYBRID.  相似文献   

8.
In this paper we present a pulse sequence that combines a displacement-encoded stimulated echo with rapid sampling of k-space by means of turbo spin echo imaging. The stimulated echo enables the use of long observation times between the two pulsed field gradients that sample q-space completely. Propagators, constructed with long observation times, could discriminate slowly flowing protons from diffusing protons, as shown in a phantom in which a plug flow with linear velocity of 50microm/s could clearly be distinguished from stationary water. As a biological application the apparent diffusion constant in longitudinal direction of a transverse image of a maize plant stem had been measured as a function of observation time. Increasing contrast in the apparent diffusion constant image with increasing observation times were caused by differences in plant tissue: although the plant stem did not take up any water, the vascular bundles, concentrated in the outer ring of the stem, could still be discerned because of their longer unrestricted diffusional pathways for water in the longitudinal direction compared to cells in the parenchymal tissue. In the xylem region of a tomato pedicel flowing water could be distinguished from a large amount of stationary water. Linear flow velocities up to 0.67 mm/s were measured with an observation time of 180 ms.  相似文献   

9.
10.
11.
Nuclear spin-spin relaxation of60Co and56Co in iron single crystals has been studied, using the three-pulse NMRON spin echo. A previously reported rapidT 2 in60CoFe is shown to have arisen from a modulation of the echo amplitude, caused by variations in the phase of the Larmor precession relative to the applied rf field. A lower limit ofT 2∼0.2s is found in56Co56 Fe. Extension of this result to other CoFe samples is discussed.  相似文献   

12.
The purpose of our study was to assess whether respiratory-triggered multishot fast spin echo (MS-FSE) and breath-hold half-Fourier single-shot fast spin echo (SS-FSE) images, in addition to breath-hold T(2)*-weighted gradient recalled echo (GRE) images, increase observer performance in the detection of malignant hepatic tumors with ferumoxide-enhanced magnetic resonance (MR) imaging. Ferumoxide-enhanced MR images obtained from 48 patients with 83 malignant hepatic tumors were retrospectively reviewed by three independent off-site readers. In the first image review, GRE images alone were reviewed. Then, MS-FSE images were added for the first combination review. Finally, SS-FSE images were added for the second combination review. Observer performances were tested by McNemar's test and receiver-operating-characteristic analysis for the clustered data. Sensitivity for hepatocellular carcinomas, metastases, and malignant hepatic tumors overall was significantly (p < 0.05) higher with GRE and MS-FSE combined and GRE, MS-FSE and SS-FSE combined than with GRE alone. For metastases, the Az value was significantly (p < 0.05) higher with GRE and MS-FSE combined, and GRE, MS-FSE and SS-FSE combined than with GRE alone. We confirmed the incremental value of ferumoxide-enhanced MR imaging by obtaining MS-FSE and SS-FSE images in addition to GRE images in the detection of malignant hepatic tumors.  相似文献   

13.
We predict a spin echo in electron transport through layered ferromagnetic-normal-ferromagnetic metal structures: whereas a spin current polarized perpendicular to the magnetization direction decays when traversing a single homogeneous ferromagnet on the scale of the ferromagnetic spin-coherence length, it partially reappears by adding a second identical but antiparallel ferromagnet. This reentrant transverse spin current resembles the spin-echo effect in the magnetization of nuclei under pulsed excitations. We propose an experimental setup to measure the spin echo.  相似文献   

14.
Muon spin echo     
A muon spin echo method is proposed for determining the contributions of the static and dynamic local fields in muon experiments. It is shown that if for each muon which has stopped in the sample a rf pulse of fixed duration is applied to the sample at a time τ after the muon entered the sample, then after a sufficient number of muon-positron decays have been accumulated a muon spin echo can appear at time 2τ. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 7, 500–503 (10 October 1996)  相似文献   

15.
16.
17.
Three-dimensional spectral-spatial-spatial images are presented for a sample containing six different species in seven compartments. EPR spectra used to construct these images were obtained by the normal CW methods and by electron spin echo detection. Images of the sample when viewed from these two different perspectives are contrasted.  相似文献   

18.
19.
20.
The neutron multiwave interference mode is investigated using the spin echo technique. In this mode a neutron wave repeatedly splits in the magnetic field of resonance coils, which results in the appearance of additional maxima of a constructive interference being absent in the well-known classical and resonance neutron spin echo modes. Simple analytical expressions well describing the experimental data are presented. It is demonstrated that the multiwave part of a spin echo signal appears when the spin flip probability in radiofrequency coils of a resonance spin echo device is ρ < 1. The possibility to use the neutron multiwave spin echo mode for investigation of high-order correlation functions, spatial and time correlations of three and more particles, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号