首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and characterization of gold‐nanoparticle‐cored dendrimers (NCDs), in which the dendrons are attached to the gold core through gold–carbon bonds, are described. Synthesis of these materials involved the simultaneous reduction of HAuCl4 and a Fréchet‐type dendron with a diazonium group at the focal point, all in an organic solvent such as toluene. These materials possess a nanometer‐sized gold core surrounded by a shell of polyaryl ether dendrons, which are connected radially to the core. The NCDs were characterized by TEM, thermogravimetric analysis (TGA), and IR, UV, and NMR spectroscopic techniques. Average particle diameter of the NCDs ranged from 4.7 to 5.5 nm for the different generations. All NCDs exhibit the characteristic plasmon absorption of gold nanoparticles at 520 nm. Average numbers of dendrons per NCD in AuGn were calculated using results from TGA and TEM studies. Multiple layering of the dendrons is proposed as a possible reason for the high dendron/NCD value.  相似文献   

2.
TiO2 nanoparticles were synthesized at approximately 0 degrees C by hydrolyzing [(CH3)2CHO]4Ti in 1-propanol solutions of poly(amido amine) dendrons with a siloxy focal point and long alkyl chain spacers. Transmission electron microscopic photographs showed that TiO2 nanoparticle was 1-5 nm in size and protected by dendrons, when prepared at a mixing ratio 1:10 of Ti ion and dendron. At higher contents of Ti ion, TiO2 nanoparticles aggregated up to a maximum size of 90 nm, depending on the dendron generation (first to third). It was confirmed from X-ray photoelectron spectroscopy that Si-O-Ti covalent bond was formed in dendron-protected TiO2 nanoparticles. The ability of dendron-protected TiO2 nanoparticles as a photocatalyst for the photodegradation of 2,4-dichlorophenoxyacetic acid was higher than that of nonprotected nanoparticle and superior at higher generation. It was suggested that the dendrons protecting TiO2 nanoparticle have enough void volume to conserve guest molecules and behave effectively as a reservoir of guest molecules.  相似文献   

3.
The synthesis and characterization of two new carbosilane dendrons functionalized in the focal point with a single thiol group is described. These molecules were used as stabilizing agents for the formation of gold nanoparticles. These materials were obtained by the reduction of hydrogen tetrachloroaurate phase-transferred into toluene in the presence of the carbosilane dendrons. The gold nanoparticle-cored dendrons (NCDs) were characterized by TEM, XPS, AFM, IR, UV, and NMR techniques. Average particle diameter ranged from 2.5 to 2.6 nm with narrow size distribution and remarkable stability; in particular, the elimination of the protecting shells to give naked gold, after NCDs deposition on a support, is more difficult using carbosilane dendrons than in the case of conventional dodecanethiol-protected gold nanoparticles.  相似文献   

4.
The peripheral functionalization of amine-terminated fourth-generation poly(amidoamine) (PAMAM) with thiophene dendrons and the preparation of dendrimer-encapsulated metal nanoparticles are described. Interesting nanoparticle stabilization and energy-transfer properties were observed with these hybrid materials. The synthesis involved imine coupling of the dendron derivatives to the peripheral amine groups of PAMAM followed by reduction. The formation of these metal-organic nanoparticle hybrid materials was monitored by UV-vis spectroscopy. The complexation of metal ions and the stabilization effect of PAMAM on metal nanoparticles were investigated by FT-IR. Energy transfer was observed between the metal surface plasmon absorption and fluorescence of the terthiophene dendrons. Noncontact magnetic-AC mode AFM imaging revealed the formation of monodispersed and very stable nanoparticles adsorbed on an HOPG flat substrate.  相似文献   

5.
The synthesis and characterization of water-soluble nitric oxide (NO)-releasing monolayer-protected gold clusters (MPCs) are reported. Tiopronin-protected MPCs ( approximately 3 nm) were functionalized with amine ligands and subsequently exposed to 5 atm of NO to form diazeniumdiolate NO donors covalently bound to the gold MPC. Diazeniumdiolate formation conditions, NO-release, and nanoparticle stability were examined as a function of the structure of the protecting ligand, pH, and storage time. Despite their aqueous solubility, proton-initiated decomposition of the diazeniumdiolate-modified Tio-MPCs resulted in only modest NO-release (<0.023 micromol/mg) for short durations (<1.5 h). To increase the NO storage capacity of gold nanoparticles, polyamine-stabilized MPCs ( approximately 5 nm) were synthesized with significantly enhanced NO-release properties (0.386 micromol/mg) and durations (up to 16 h). Transmission electron microscopy, thermogravimetric analysis, nuclear magnetic resonance spectroscopy, elemental analysis, and UV-vis spectroscopy were used to characterize both nanoparticle systems before and after NO exposure. The MPCs represent the smallest water-soluble NO-release nanoparticles to date (3-5 nm).  相似文献   

6.
A.R. Lister 《Tetrahedron》2006,62(43):10208-10214
A series of poly(phenyl ketone) dendrons have been constructed using a convergent strategy. An aryl fluoro-substituent is deactivated towards nucleophilic substitution by protection of a para-ketone as an acetal. This allows coupling to an activated aryl fluoride.Subsequent deprotection of the acetyl group then activates the first fluoro-substituent and allows the next generation of the dendron to be added. The synthesis of higher generations is complicated by a scrambling reaction, which lowers the yields.  相似文献   

7.
An improved strategy to synthesize oligo(ethylene glycol)‐based secondary generation (G2) dendron is presented. The overall synthesis efficiency increased by 50% when comparing to the previous method, and the product purification by column chromatography becomes much easier. Based on this approach, the synthesis of the third‐generation (G3) dendrons and the corresponding methacrylate‐based G3 macromonomer becomes feasible. Because of the oil characteristics of this macromonomer, its polymerization was able to be conducted in bulk with AIBN as the initiator. The polymerization degree of the third‐generation dendronized polymer ( PG3 ) was found to be around 16 based on GPC measurement. The thermally induced dehydration processes of this polymer were monitored by temperature‐varied proton NMR spectroscopy, and its thermoresponsive behaviors were investigated with turbidity measurements using UV–vis spectroscopy. Similar to the lower generation counterparts, this threefold branched dendronized polymer also shows characteristic fast and sharp phase transitions around its apparent lower critical solution temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6630–6640, 2009  相似文献   

8.
In this work, the synthesis, characterization, and applications of branched oligothiophene dendrons that act as electroactive surfactants for the capping of Au metal nanoparticles and CdSe quantum dots are described. Two distinct methods have been employed for synthesis: a ligand exchange process and a direct-capping synthesis approach. The coverage of the dendrons per nanocrystal, the nature of the surface coordination interactions, and energy transfer interactions were studied in detail using UV-vis absorbance, FT-IR, AFM, TEM, and photoluminescence spectroscopy. The competition/displacement in ligand metathesis is highlighted by the size of the dendron and nature of binding on semiconductor nanocrystals. In the other system using the direct capping method, the size of the Au nanoparticle is mediated by the dimensions of the ligand, i.e. alkyl chain spacer and dendron branching or size. These hybrid dendron/nanoparticle complexes are generally very soluble and stable in non-polar solvents. They exhibit energy transfer, surface plasmon resonance effects, and photoinduced charge transfer interactions between the metal/semiconductor and conjugated ligands. Adsorption on mica and graphite surfaces was observed. A one-layer photovoltaic cell was fabricated to demonstrate the potential for device applications.  相似文献   

9.
A series of hybrid Au-nanoparticle-dendrimer materials: nanoparticle-cored thiophene dendrimers (NCTDs) were synthesized, characterized, and investigated for their energy-transfer properties. These hybrid nanoparticles were obtained by the simultaneous and in situ reduction of gold(III) chloride and self-assembly of the thiol-containing thiophene dendritic ligands. The dendron ligands were radially attached to the gold nanoparticles and were analyzed by TEM, UV/Vis, (1)H NMR, and FTIR spectroscopies. The solution fluorescence of the attached thiophene dendrons are quenched progressively. Both alkyl-chain length and dendron size have significant influence on the energy-transfer efficiency, as well as on core sizes and size distribution of the Au nanoparticles. In spite of the phenomenon's dependence on nanoparticle size, the energy transfer generally follows the 1/d(2) distance dependence. Single NCTD nanoparticles were also adsorbed on highly ordered pyrolytic graphite (HOPG) and uniform aggregates were observed on mica flat substrates.  相似文献   

10.
Dendrimers are an important class of polymeric materials for a broad range of applications in which monodispersity and multivalency are of interest. Here we report on a highly efficient synthetic route towards bifunctional polyglycerol dendrons on a multigram scale. Commercially available triglycerol (1), which is highly biocompatible, was used as starting material. By applying Williamson ether synthesis followed by an ozonolysis/reduction procedure, glycerol-based dendrons up to the fourth generation were prepared. The obtained products have a reactive core, which was further functionalized to the corresponding monoazido derivatives. By applying copper(I)-catalyzed 1,3-dipolar cycloaddition, so-called "click" coupling, a library of core-shell architectures was prepared. After removal of the 1,2-diol protecting groups, water-soluble core-shell architectures 24-27 of different generations were obtained in high yields. In the structure-transport relationship with Nile red we observe a clear dependence on core size and generation of the polyglycerol dendrons.  相似文献   

11.
Poly(amidoamine) dendrons of 1-3 generations with naphthyl groups at the periphery and a dansyl group at the focal point were synthesized and carefully characterized. Intramolecular energy-transfer properties of these flexible aliphatic-scaffold light-harvesting dendrons were investigated by UV-vis absorption and fluorescence spectroscopy. Efficient energy transfer from the naphthyl groups to the dansyl group occurred for both the first and the second generation dendrons (the energy-transfer efficiency was 94.3% and 76.9%, respectively), whereas the third generation dendron exhibited a low energy-transfer efficiency of 17.8%. The average donor-acceptor distances between the naphthyl and dansyl groups were calculated for different generation dendrons. Different degrees of the backfolding of dendritic branches were used to interpret the different donor-acceptor distances.  相似文献   

12.
合成了1~3代的嵌段树枝状分子聚苄醚-聚脂肪酯(Gx-PBE-b-Gx-PMPA, x=1,2,3)和两亲嵌段树枝状分子聚苄醚-周边含羟基的聚脂肪酯[Gx-PBE-b-Gx-PMPA(OH)x2, x=1,2,3]. PMPA(OH)x2-树枝片(Dendron)段周边的羟基数目分别是2, 4和8. 通过1H NMR, 13C NMR, FTIR和基质辅助激光解吸附电离飞行时间质谱(MALDI-TOF)(或场解析电离质谱)技术表征了Gx-PBE-b-Gx-PMPA和Gx-PBE-b-Gx-PMPA(OH)x2的结构. 同时, 采用变温FTIR光谱研究了在两亲嵌段树枝状分子中形成的氢键模式. 结果表明, 随着树枝片代数的增加, 两亲嵌段树枝状分子内趋向于形成作用较弱的分子内氢键, 说明形成3代两亲嵌段树枝状分子的三维结构削弱了羟基形成分子间氢键的能力.  相似文献   

13.
A systematically varying series of monolayer-protected clusters (MPCs) was prepared by exposing small gold nanoparticles ( approximately 2 nm in diameter) to the following four adsorbates: n-octadecanethiol ( n - C18), 2-hexadecylpropane-1,3-dithiol ( C18C2), 2-hexadecyl-2-methylpropane-1,3-dithiol ( C18C3), and 1,1,1-tris(mercaptomethyl)heptadecane ( t - C18). The resultant MPCs were characterized by solubility studies, UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FT-IR). All of the MPCs were soluble in common organic solvents; moreover, analysis by TEM showed that the core dimensions were unaffected by exposure to any of the adsorbates. Separate studies by XPS revealed that the sulfur atoms in all MPCs were predominantly bound to the surface of gold (i.e., approximately 85% or better). Analysis by FT-IR showed that MPCs functionalized with n - C18 possessed alkyl chains having the greatest conformational order in both the solid-state and dispersed in solution; in contrast, those generated from the other three adsorbates were more liquid-like with reduced conformational order (or crystallinity). The rate of nanoparticle decomposition induced by cyanide ions was monitored by UV-vis spectroscopy. While MPCs functionalized with n - C18 showed the fastest rate of decomposition, those functionalized with C18C3 were the most resistant to decomposition. Overall, the following trend in chemical stability was observed, C18C3 > C18C2 > t - C18 > n - C18.  相似文献   

14.
采用柠檬酸钠还原法制备了水相金纳米粒子, 通过巯基的自组装, 成功获得了巯基十一烷醇(MUN)单分子层保护的金纳米粒子. 用紫外可见光谱、透射电子显微镜、激光散射粒度分析、同步散射光谱和发射光谱等手段对组装前后的金纳米粒子的性质进行了研究. 结果表明: 制备的金纳米粒子最大吸收波长518 nm, 形状规则, 粒度均匀, 平均粒径为14.6 nm, 每个粒子含有约9.64×104原子; 组装之后的金纳米粒子表面等离子体共振吸收峰红移17.0 nm, 平均粒径增大为20.2 nm, 组装层的平均厚度2.8 nm, 与MUN分子长度相当, 结合量实验证明每一个金纳米粒子可以结合约7.52×103个MUN, 表面覆盖率为83.6%, 粒子分散均匀, 稳定性增强可长期保存; 同步散射光谱变化和发射光谱中分频、差频和倍频峰的存在证明, 金纳米粒子组装前后均具有非线性光学特性.  相似文献   

15.
Magnetic nanoparticles (MNPs) modified with the thiol functionalized polyamidoamine (PAMAM) dendron were synthesized to estimate their DNA recovery capabilities. Aminosilane-modified MNPs and MNPs surrounded by a phospholipid (distearoylphosphatidylethanolamine (DSPE)) bilayer were used as core particles. Cystamine-core PAMAM dendrimers were reduced by dithiothreitol to dendron thiols and chemically conjugated to the core particles. Characterization of the synthesis revealed an increase of the surface amine charge from generation 1 (G1) to G6, starting with an aminosilane initiator. Particle size distribution analysis indicated that G6 PAMAM-modified MNPs exhibited monodispersity in an aqueous solution. G6 PAMAM-MNPs and G6 PAMAM-PE-MNPs synthesized by the proposed method have equivalent DNA recovery abilities to PAMAM-MNPs prepared by the conventional divergent synthesis method. In optimized conditions, 96% of λDNA was recovered using G6 PAMAM-PE-MNPs. Therefore, the method for preparing PAMAM-MNPs and PAMAM-PE-MNPs proposed in this study will be a novel approach for producing DNA carriers for efficient DNA purification by magnetic separation.  相似文献   

16.
Finke AD  Moore JS 《Organic letters》2008,10(21):4851-4854
An iterative synthesis of 1,3,5-polyphenylene dendrons via C-H activation/Suzuki-Miyaura coupling up to a third generation dendron is described. C-H bonds at the focal points of the dendrons are selectively borylated via iridium-catalyzed borylation, eliminating the need for reactive protecting groups. Sequential additions of low catalyst loadings efficiently borylate higher-generation dendrons, whereas higher initial catalyst loadings are less efficient.  相似文献   

17.
The FTIR and FT Raman spectra of the "Janus"-type dendrimers, possessing five carbamate groups on one side and five fluorescent dansyl derivatives on the other side, with amide G(1) and hydrazone G(2) central linkages were studied. These surface-block dendrimers are obtained by the coupling of two different dendrons. The FTIR and FT-Raman spectra of the zero generation dendrons, built from the hexafunctional cyclotriphosphazene core, with five dansyl terminal groups and one carbamate G(0v) and one oxybenzaldehyde function G(0v)' have been recorded. The structural optimization and normal mode analysis were performed for dendron G(0v)' on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that dendron molecule G(0v)' has a concave lens structure with planar -O-C(6)H(4)-CHO fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of dendron G(0v)' were interpreted by means of potential energy distributions. Relying on DFT calculations a complete vibrational assignment is proposed. The strong band 1597 cm(-1) show marked changes of the optical density in dependence of substituents in the aromatic ring. The frequencies of ν(N-H) bands in the IR spectra reveal the presence of the different types of H-bonds in the dendrimers.  相似文献   

18.
A new, facile and generally applicable synthesis of functionalized gold nanoparticles is presented. It is based on the surfactant-free generation of weakly stabilized nanoparticles by the reduction of HAuCl4 with sodium naphthalenide in diglyme. These nanoparticles were found to lack long-term stability. However, stabilization in both unpolar and polar solvents could straightforwardly be achieved by subsequent addition of various capping ligands. The resulting ligand-capped gold nanoparticles were investigated by TEM microscopy, UV-vis, and FT-IR spectroscopy. Particle core size can be tuned by the amount of reduction agent. The strict separation of the reduction step and the functionalization step in this one-pot synthesis offers an easy and fast access to highly functionalized gold nanoparticles.  相似文献   

19.
Multidentate carbosilane films were prepared by thermally induced hydrosilylation of allyl-terminated carbosilane dendrons of generations 0, 1, and 2 (G0-G2) on hydrogen-terminated silicon(111) surfaces. The dendron molecules contain three (G0), nine (G1), and twenty-seven (G2) allyl groups at the periphery, and a bromophenyl functional group at the focal point. The dendron films were characterized by contact-angle goniometry, ellipsometry, Fourier transform infrared spectroscopy in the attenuated total reflection mode, and X-ray photoelectron spectroscopy (XPS). Upon hydroboration of the remaining allyl groups in the films, the percentage of the introduced boron atoms in the films were measured by XPS. The results indicate the presence of roughly 20%, 27%, and 46% of unreacted allyl groups in the G0, G1, and G2 films, respectively. The mechanistic aspects of the chemisorption of these dendron molecules on H-Si(111) surfaces are discussed. XPS studies indicate that seven G0 molecules cover approximately the same area on the substrate as three G1 molecules and one G2 molecule. After treatment of the G0, G1, and G2 films with 4-fluorostyrene under the Heck reaction conditions, the XPS studies indicate that about 84%, 71%, and 55% of the Br atoms were consumed, yielding the replacement of ca. 58-70% of the reacted Br atoms by the fluorostyryl groups. The remaining bromophenyl groups were inactive toward the Heck reaction, probably due to their disfavorable position/orientation in the films.  相似文献   

20.
Liquid‐crystalline dendrons carrying either a thiol or disulfide function which display nematic, smectic A, columnar, or chiral nematic phases have been synthesized. Their mesomorphic properties are in agreement with the nature of the mesogenic units and structure of the dendrons. The first‐generation poly(aryl ester) dendron containing two cyanobiphenyl mesogenic units was used to functionalize gold nanoparticles. For full coverage, a smectic‐like supramolecular organization on the nanometer scale is observed, when the gold nanoparticles are spread onto carbon‐coated copper grids. This result indicates that the dendritic ligands reported here act as self‐organization promoters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号