首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Anatoxin-a(s) is a hazardous toxin released by cyanobacteria during bacterial blooms. A simple and fast method to detect this hazardous compound using a biosensor based on the electrochemical detection of the activity of acetylcholinesterase was developed. Among several acetylcholinesterases, electric eel enzyme was found to be the most sensitive to anatoxin-a(s) and was thus used to build disposable amperometric sensors. The system displayed a detection limit of 1 microg/L anatoxin-a(s). No unspecific effect was noticed with real water samples but spiked toxin was accurately detected. Oxime reactivation was used to discriminate between the toxin and potential insecticides present in the sample.  相似文献   

2.
An ascorbic acid (AA) sensor based on an ion-sensitive field-effect transistor (ISFET) was prepared by modifying the sensitive area of the transducer with MnO2 nanoparticles. An additional Nafion membrane coated on top of the sensor was used to immobilize the MnO2 nanoparticles and restrict the amount of ascorbic acid entering the membrane. The reaction of the MnO2 nanoparticles with ascorbic acid produced a local pH change, which was correlated with the ascorbic acid concentration and could be monitored by the ISFET. The linear range of the ascorbic acid sensor was 0.02-1.27 mM, and the detection limit was 0.01 mM. The effects of buffer concentration, pH, and ionic strength on the sensor performance were also examined. In addition, the sensor has good stability and reproducibility, and the construction and renewal of the sensor are simple and inexpensive.  相似文献   

3.
4.
Pesticides are widely used in paddy field to control pests, diseases, weeds and other rice pathogens in minimizing a serious loss in rice production. The presence of pesticide residues and metabolites in rice, water, soil, currently represents a major environmental pollutant issues. It sometime will cause insect pest outbreaks in paddy field. An electrochemical enzyme inhibition sensor using screen-printed carbon working electrode with onboard carbon counter and silver–silver chloride pseudo-reference electrode for insecticides detection is described in this paper (Figure 1). The detection is based on the inhibition of insecticides used in paddy field towards acetyl-cholinesterase enzyme (AChE) with the presence of Acetylthiocholine Iodide (ATCh) substrate on the sensor surface. The mixtures of AChE enzyme (0.02 UmL-1), electron mediator, TCNQ (1mM) and polypyrrole matrix (75 mM) were electro- polymerized on the sensor surface with a constant potential of 1.0V for 20 minutes. The sensor was soaked for 5 minutes with insecticides standard or sample containing insecticides before the electrochemical measurement was taken by adding Acetylthiocholine Iodide substrate in KCl (0.08M, pH 7.5) which acts as the enzyme mediator /substrate system. The current measurement was conducted using chronoamperometry at 100mV vs. on board screen-printed Ag-AgCl pseudo- reference electrode. Comparative analysis of spiked water samples with 0.1ppm pesticides and real samples (paddy) also were conducted using enzyme inhibition sensor and gas chromatography methods. From the data analysis, it showed very comparable results with R2 = 0.96 in the correlation plot for paddy samples samples. This makes the developed sensor a potential tool for the rapid, simple and sensitive detection of insecticides residues in agriculture industry.  相似文献   

5.
以有序介孔碳(OMC)球为离子-电子转换层,制备了固态氯离子选择性电极,构建了基于离子敏感的场效应晶体管(ISFET)的手持式传感系统,用于检测人体血清中的氯离子。优化了OMC前驱体的碳化温度,探究了OMC形貌结构对电极传感性能的影响;电极柔性化制备后考察了其在手持系统中对氯离子的检测效果。结果表明,最优条件下,电极在5.12×10^-4~1.02 mol/L的浓度范围呈现线性响应,响应斜率为60 mV/decade。该柔性电极在手持传感系统中展现出高灵敏度和重现性,可用于人体血清样品中氯离子的检测,其回收率为96.3%~104.9%。  相似文献   

6.
Sànchez J  Del Valle M 《Talanta》2001,54(5):893-902
The preparation of a new ion-selective field-effect transistor (ISFET) based on a photocurable membrane sensitive to anionic surfactants is described. The membrane is formed by an urethane-acrylate matrix with 2-cyanophenyl octyl ether as the plasticiser. When compared to conventional ion-selective electrodes, the prepared ISFETs do not show significant differences in sensitivity and reproducibility (P=0.05). When calibrating with dodecylbenzenesulfonate (DBS(-)) the prepared ISFETs show a nernstian behaviour, with a slope of 57.5 mV per decade. The linear working range is 1.0x10(-3) to 3.0x10(-6) M DBS(-) and the detection limit is 1.2x10(-6) M. The response times were below 0.7 min in all cases (95% of the step change). As the application, photodegradation processes using titanium dioxide dispersions, were monitored for two common anionic surfactants: DBS(-), being aromatic, and the more alkylic dodecylsulfate, DS(-). The determination of surfactant concentration was performed following a standard addition methodology, using ISFETs as the sensors, and without any previous separation stages. The degradation kinetics in both cases are first-order processes, with half-life times (t(0.5)) of 31.5 min for DBS(-) and 52.0 min for DS(-).  相似文献   

7.
Dopamine (1) and tyrosinase (TR) activities were analyzed by using chemically modified ion-sensitive field-effect transistor (ISFET) devices. In one configuration, a phenylboronic acid functionalized ISFET was used to analyze 1 or TR. The formation of the boronate-1 complex on the surface of the gate altered the electrical potential associated with the gate, and thus enabled 1 to be analyzed with a detection limit of 7x10(-5) M. Similarly, the TR-induced formation of 1, and its association with the boronic acid ligand allowed a quantitative assay of TR to be performed. In another configuration, the surface of the ISFET gate was modified with tyramine or 1 to form functional surfaces for analyzing TR activities. The TR-induced oxidation of the tyramine- or 1-functionalized ISFETs resulted in the formation of the redox-active dopaquinone units. The control of the gate potential by the redox-active dopaquinone units allowed a quantitative assay of TR to be performed. The dopaquinone-functionalized ISFETs could be regenerated to give the 1-modified sensing devices by treatment with ascorbic acid.  相似文献   

8.
A highly selective, interference free biosensor for the measurement of fructose in real syrup samples was developed. The assay is based on the phosphorylation of d(−)fructose to fructose-6-phosphate by hexokinase and subsequent conversion of fructose-6-phosphate to fructose-1,6-biphosphate by fructose-6-phosphate-kinase. The heat liberated in the second reaction is monitored using an enzyme thermistor. The major advantages of this biosensor are rapid and selective measurement of fructose without the need to eliminate glucose and inexpensive FIA-based, mediator-free calorimetric measurement suitable for regular fructose analysis. This method was optimised for parameters, such as pH, ionic strength, interference, operational stability and shelf life. Good and reproducible linearity (0.5-6.0 mM) with a detection limit of 0.12 mM was obtained. Fructose determination in commercial syrup samples and spiked samples confirmed the reliability of this set-up and technique. The biosensor gave reproducible results with good overall stability for continuous measurements over a period of three months besides a useful shelf life of six months. The method could be used for routine fructose monitoring in food samples.  相似文献   

9.
A silicone ladder-type polymer was successfully utilized for a matrix of an ion sensing membrane to fabricate an ion-sensitive field-effect transistor. An ion sensing membrane was readily fabricated by mixing a silicone ladder-type oligomer with a quaternary ammonium salt, casting onto the gate of the field-effect transistor, and polymerizing with heating. Since no acid catalysts were needed to prepare the ion sensing membrane, it was possible to keep the quaternary ammonium salt in the matrix without decomposition. The ion-sensitive field-effect transistor based on the silicone ladder-type polymer and the quaternary ammonium salt showed a linear response with a slope of -58.1 mV decade(-1) very close to the theoretical Nernstian response over an NO3- range between 3.0 x 10(-6) and 1.0 x 10(-1) M. The time required to reach 90% total response was within 5 s, when the NO3- concentration was changed from 1.0 x 10(-3) to 3.0 x 10(-3) M. The newly fabricated ion-sensitive field-effect transistors have kept their original sensitivity for more than half a year.  相似文献   

10.
 The development of a new type of microsensors based on chemically sensitive field-effect transistors (CHEMFETs) covered with polymeric bulk ion-partitioning membranes is presented. For the construction of the microsensor, a PVC plasticized membrane containing two ionophores, one selective to protons and the other to the analyte cation of interest, is placed on the gate of a pH sensitive field-effect transistor which acts as the transducer. With the use of thin (5–10 μm) ion-partitioning membranes onto the pH-sensitive ISFET gate, the proton displacement out of the membrane and to the pH sensitive gate is fast and reversible. This displacement generates a signal that is directly related to the analyte concentration found in the test solution. Comparing the performance of CHEMFETs and ISEs selective to the monovalent potassium cation and the divalent calcium ion validates this novel CHEMFET response mechanism.  相似文献   

11.
Wakida S  Yamane M  Hiiro K 《Talanta》1988,35(4):326-328
A durable chloride ion-selective field effect transistor (ISFET) is proposed with Urushi as the membrane matrix. The chloride ion-sensing material is a quaternary ammonium chloride: trioctylmethylammonium chloride (TOMA-Cl) or tridodecylmethylammonium chloride (TDMA-Cl). The optimum composition of the Urushi membrane was found by use of Urushi ion-selective electrodes. The mixture with the most favourable composition was coated on the gate region of the FET device. The Urushi ISFET with TDMA-Cl proved to be superior to that with TOMA-Cl, in sensitivity, linearity and selectivity. The Urushi ISFET with TDMA-Cl showed a linear response of about -51 mV per decade change of chloride ion activity in the range 10(-4)-1M. The Urushi ISFET showed excellent stability and durability for over two months, because of strong adhesion of the membrane to the Si(3)N(4) gate.  相似文献   

12.
This article describes a biosensor based on pH-sensitive field-effect transistors (pH-FETs) as transducer, and immobilised enzyme tyrosinase as biorecognition element, which was used for the determination of phenolic compounds in water solutions. The biologically active membrane was formed by cross-linking of tyrosinase with bovine serum albumin (BSA) in saturated glutaraldehyde (GA) vapours on the sensitive transducer surface. The main analytical characteristics were studied under different conditions as well as the possibility to optimise these working parameters. Different factors such as the pH of immobilisation, the enzyme loading, the time of exposition to glutaraldehyde vapours were investigated in regards to the influence on sensitivity, limit of detection, dynamic range, and operational and storage stability.  相似文献   

13.
Summary A non-aqueous and an aqueous photopolymer system with an enzyme are used to prepare photolithographically patterned enzyme membranes for amperometric (thinfilm platinum electrode) and potentiometric (ISFET) sensors based on enzyme inhibition. Flow methods for enzyme inhibition tests are described. The decrease in enzyme (AChE) activity after incubation in a solution of dichlorvos as inhibitor is detected amperometrically. The enzyme urease is immobilized onto the pH-sensitive gate area of an ISFET. Such a biosensor is able to detect copper-(II) in water in the ppm-range without preconcentration.Dedicated to Professor Dr. Wilhelm Fresenius on the occasion of his 80th birthday  相似文献   

14.
A new biosensor sensitive to chloride anion using a light-driven chloride pump protein, halorhodopsin (hR), and an ion-sensitive field effect transistor (ISFET) has been developed. Membrane vesicles of halophilic bacteria containing hR were immobilized in the matrix of polyvinylbutyral resin on the surface of the ISFET. The gate voltage of this device changed in the min time scale under yellow light illumination. The response for chloride anion increased according to the increase of chloride anion concentration in the bulk aqueous phase. In the dark, the gate potential did not change even in the presence of chloride anion. These chloride-dependent gate potential changes of the hR-ISFET indicate that the chloride pumping by hR is active on the ISFET and that ISFET detects the light-dependent chloride transport by hR.  相似文献   

15.
In recent years, cell-based biosensors (CBBs) have been very useful in biomedicine, food industry, environmental monitoring and pharmaceutical screening. They constitute an economical substitute for enzymatic biosensors, but cell immobilization remains a limitation in this technology. To investigate into the potential applications of cell-based biosensors, we describe an electrochemical system based on a microbial biosensor using an Escherichia coli K-12 derivative as a primary transducer to detect biologically active agents. pH variations were recorded by an ion-sensitive field effect transistor (ISFET) sensor on bacteria immobilized in agarose gels. The ISFET device was directly introduced in 100 ml of this mixture or in a miniaturized system using a dialysis membrane that contains 1 ml of the same mixture. The bacterial activity could be detected for several days. The extracellular acidification rate (ECAR) was analyzed with or without the addition of a culture medium or an antibiotic solution. At first, the microorganisms acidified their micro-environment and then they alkalinized it. These two phases were attributed to an apparent substrate preference of bacteria. Cell treatment with an inhibitor or an activator of their metabolism was then monitored and streptomycin effect was tested.  相似文献   

16.
An alcohol -FET sensor was developed by use of a complex enzyme system in a cell membrane and an ion-sensitive field effect transistor (ISFET). The cell membrane of Gluconobacter suboxydans IFO 12528, which converts ethanol to acetic acid, was immobilized on the gate of an ISFET with calcium alginate gel coated with nitrocellulose. This ISFET (1), a reference ISFET without the cell membrane (ISFET 2) and an Ag/AgCl reference electrode were placed in 5 mM Trismalate buffer (pH 5.5, 25°C), and the differential output between ISFETS 1 and 2 was measured. The output of the sensor was stabilized by adding pyrroloquinoline quinone. The response time was ca. 10 min., and there was a linear relationship between the differential output voltage and the ethanol concentration up to 20 mg l?1. The output of the sensor was stable for 40 h below 30°C. The sensor responded to ethanol, propan- 1-ol and butan- 1-ol, but not to methanol, propan-2-ol and butan-2-ol. The sensor was used to determine blood ethanol.  相似文献   

17.
Poly(3,4‐ethylenedioxythiophene) (PEDOT) and its derivatives are relatively new, and unique members of conducting‐polymers family. In this article, we present an approach for simple, reliable and cost‐efficient electrochemical biosensor for real‐time detection and quantification of phenolic compounds (PhCs). The PEDOT:poly(styrene sulfonate) (PSS) polymer, directly screen‐printed on the surface of the working electrode, was shown to act as an effective electrical conductor but also as an efficient redox mediator. It has also been found suitable for the reduction of quinone ions at low reducing potentials, close to 0 V versus Ag/AgCl, thus minimizing interferences due to other electroactive species present in real samples. Based on these properties, a biosensor based on tyrosinase immobilized on PEDOT:PSS‐modified electrodes was developed allowing the detection of PhCs in surface waters. The biosensor displayed very good performance in terms of sensitivity, detection limit and linear range. Assays using surface water previously spiked with bisphenol A showed that the biosensor was able to detect PhCs in real conditions with no matrix effect. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
A new type of biosensor based on the coupling of an enzyme to an ion-selective membrane containing a conducting polymer is evaluated. The results obtained with the enzyme field- effect transistor (ENFET) and the ion-selective electrode (ISE) for the determination of creatinine and urea are compared. The presence of the conducting polymer significantly lowers the detection limit for creatinine by one decade to 10?7 and 10?4 M for the ENFET and ISE, respectively. The determination of urea in urine and serum with the ENFET was carried out, and the results correlated well with those obtained by spectrophotometry.  相似文献   

19.
A urea biosensor prepared by covalent binding of urease directly to the surface of an ammonium-sensitive field effect transistor (FET) is described. Nonactin incorporated in carboxylated polyvinyl chloride was used to obtain the sensitive membrane of the ammonium-sensitive FET. The grafting of urease on the polyvinylchloride-COOH membrane surface was performed through carbodiimide coupling. The activity of the immobilized enzyme was spectrometrically controlled through the time-dependent disappearance of the absorbance of NADH at 340 nm. An apparent activity of 50% was found, compared with free enzyme. The sensitivity of the urea enzyme FET is 50 mV/pUrea working in a differential mode of 2 muM to 1 mM, this sensitivity being constant during 15 days. Finally, in order to test the potentialities of the urea biosensor for the environmental applications, the detection of heavy metal ions such as Cu(II) and Hg(II) in solution was performed by measuring the remaining activity of the inhibited enzyme.  相似文献   

20.
Organophosphate pesticides (OPs) have been intensively used as insecticides in agriculture; after entering the aquatic environment, they may affect a wide range of organisms. A conductometric enzymatic biosensor based on lipase extracted from Candida rugosa (CRL) has therefore been developed for the direct and rapid quantitative detection of organophosphate pesticides: diazinon, methyl parathion and methyl paraoxon in water. The biosensor signal and response time were obtained under optimum conditions, the enzyme being immobilised in the presence of gold nanoparticles. Under these conditions, the enzymatic biosensor was able to measure concentrations as low as 60 µg/L of diazinon, 26 µg/L of methyl parathion and 25 µg/L of methyl paraoxon very rapidly (response time: 3 min). Moreover, this CRL biosensor was not sensitive to interferences such as carbamates. It presented good storage stability for 21 days when kept at 4°C and it was successfully applied to real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号