首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design of inhibitors of intracellular protein–protein interactions (PPIs) remains a challenge in chemical biology and drug discovery. We propose a cyclized helix‐loop‐helix (cHLH) peptide as a scaffold for generating cell‐permeable PPI inhibitors through bifunctional grafting: epitope grafting to provide binding activity, and arginine grafting to endow cell‐permeability. To inhibit p53–HDM2 interactions, the p53 epitope was grafted onto the C‐terminal helix and six Arg residues were grafted onto another helix. The designed peptide cHLHp53‐R showed high inhibitory activity for this interaction, and computational analysis suggested a binding mode for HDM2. Confocal microscopy of cells treated with fluorescently labeled cHLHp53‐R revealed cell membrane penetration and cytosolic localization. The peptide inhibited the growth of HCT116 and LnCap cancer cells. This strategy of bifunctional grafting onto a well‐structured peptide scaffold could facilitate the generation of inhibitors for intracellular PPIs.  相似文献   

2.
A systematic comparison between the grafting‐to (convergent) and grafting‐from (divergent) synthetic routes leading to cyclic peptide–polymer conjugates is described. The reversible addition–fragmentation chain transfer (RAFT) process was used to control the polymerizations and the couplings between cyclic peptide and polymer or RAFT agent were performed using N‐hydroxysuccinimide (NHS) active ester ligation. The kinetics of polymerization and polymer conjugation to cyclic peptides were studied for both grafting‐to and grafting‐from synthetic routes, using N‐acryloyl morpholine as a model monomer. The cyclic peptide chain transfer agent was able to mediate polymerization as efficiently as a traditional RAFT agent, reaching high conversion in the same time scale while maintaining excellent control over the molecular weight distribution. The conjugation of polymers to cyclic peptides proceeded to high conversion, and the nature of the carbon at the α‐position to the NHS group was found to play a crucial role in the reaction kinetics. The study was extended to a wider range of monomers, including hydrophilic and temperature responsive acrylamides, hydrophilic and hydrophobic acrylates, and hydrophobic and pH responsive methacrylates. Both approaches lead to similar peptide–polymer conjugates in most cases, while some exceptions highlight the advantages of one or the other method, thereby demonstrating their complementarity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1003–1011  相似文献   

3.
The polyethylene glycol resin (PEG-Resin) which possesses hydrophilic properties was prepared by grafting the polyethylene glycol onto the chloromethylated copolymer of styrene and divinylbenzene in the presence of concentrated sodium hydroxide solution. The proceeding of the graft reaction was identified by IR spectrum analysis. There factors which affected the grafting reactions were investigated. By using the PEG-Resin polymer support, we compared the reactions for the syntheses of a tetra-peptide and a penta-peptide with the Merrifield solid peptide synthesis. We also measured the reaction kinetics of these reactions. The experimental results showed that by employing the PEG-Resin, the reaction rates and condensation yields of these peptide syntheses were improved.  相似文献   

4.
We have developed and investigated a new route to functionalise Au surfaces using maleimide groups. This functionalisation has been performed by grafting aminophenyl (AP) via an electrochemical reduction of 4-aminophenyldiazonium salt in acetonitrile solution and the subsequent chemical binding of N-(2-carboxyethyl) maleimide (NCEM). The resulting maleimide functionalised surface was interacted with a cysteine-modified peptide. The grafting of AP was monitored by the occurrence of NH2 and aryl ring vibrations, whereas the binding of the NCEM led to a strong and sharp peak because of the C═O stretching mode. The immobilisation of the peptide was identified by the appearance of the amide I band. Half of the maleimide surface groups reacted with the peptide because of steric hindrance. The charge efficiency for the AP layer formation was about 45% at a thickness of about 6–8 nm.  相似文献   

5.
本文综述了近年来在线形聚合物、树枝状大分子及树枝化聚合物等不同聚合物的每个重复单元上,高密度地、通过不同联接方式接枝上新的聚合物侧链而形成的刷形接枝共聚物,即聚合物分子刷的研究进展。主要介绍聚合物分子刷的三种合成途径,即“大单体聚合法”,“从主链接枝法”及“接枝到主链法”,并对不同路线的特点进行分析,同时对分子刷在制备纳米杂化材料、纳米导线及智能材料等方面的应用进行了综述。  相似文献   

6.
Harnessing metal‐free photoinduced reversible‐deactivation radical polymerization (photo‐RDRP) in organic and aqueous phases, we report a synthetic approach to enzyme‐responsive and pro‐apoptotic peptide brush polymers. Thermolysin‐responsive peptide‐based polymeric amphiphiles assembled into spherical micellar nanoparticles that undergo a morphology transition to worm‐like micelles upon enzyme‐triggered cleavage of coronal peptide sidechains. Moreover, pro‐apoptotic polypeptide brushes show enhanced cell uptake over individual peptide chains of the same sequence, resulting in a significant increase in cytotoxicity to cancer cells. Critically, increased grafting density of pro‐apoptotic peptides on brush polymers correlates with increased uptake efficiency and concurrently, cytotoxicity. The mild synthetic conditions afforded by photo‐RDRP, make it possible to access well‐defined peptide‐based polymer bioconjugate structures with tunable bioactivity.  相似文献   

7.
General synthetic methods for the grafting of peptide chains onto polyoxometalate clusters by the use of general activated precursors have been developed. Using a solution‐phase approach, pre‐synthesized peptides can be grafted to a metal oxide cluster to produce hybrids of unprecedented scale (up to 30 residues). An adapted solid‐phase method allows the incorporation of these clusters, which may be regarded as novel hybrid unnatural amino acids, during the peptide synthesis itself. These methods may open the way for the automated synthesis of peptides and perhaps even proteins that contain “inorganic” amino acids.  相似文献   

8.
Potent and specific inhibitors of protein.protein interactions have potential both as therapeutic compounds and biological tools, yet discovery of such molecules remains a challenge. Our laboratory has recently described a strategy, called protein grafting, for the identification of miniature proteins that bind protein surfaces with high affinity and specificity and inhibit the formation of protein.protein complexes. In protein grafting, those residues that comprise a functional alpha-helical binding epitope are stabilized on the solvent-exposed alpha-helical face of the small yet stable protein avian pancreatic polypeptide (aPP). Here we use protein grafting in combination with molecular evolution by phage display to identify phosphorylated peptide ligands that recognize the shallow surface of CBP KIX with high nanomolar to low micromolar affinity. Furthermore, we show that grafting of the CBP KIX-binding epitope of CREB KID onto the aPP scaffold yields molecules capable of high affinity recognition of CBP KIX even in the absence of phosphorylation. Importantly, both classes of designed ligands exhibit high specificity for the target CBP KIX domain over carbonic anhydrase and calmodulin, two unrelated proteins that bind hydrophobic or alpha-helical molecules that might be encountered in vivo.  相似文献   

9.
The objective of this work was to investigate the combined effect of grafting the peptide corresponding to amino acid residues 162-168 of osteopontin (OPD peptide) and the peptide corresponding to amino acid residues 73-92 of bone morphogenetic protein-2 (BMP peptide) to an RGD-conjugated inert hydrogel on osteogenic and vasculogenic differentiation of bone marrow stromal (BMS) cells. RGD-conjugated three-dimensional (3D) porous hydrogel scaffolds with well-defined cylindrical pore geometry were produced from sacrificial wax molds fabricated by fused deposition modeling rapid prototyping system. Propargyl acrylate and 4-pentenal were conjugated to the hydrogel for orthogonal grafting of BMP and OPD peptides by click reaction and oxime ligation, respectively. The OPD peptide was grafted by the reaction between aminooxy moiety of aminooxy-mPEG-OPD (mPEG = mini-poly(ethylene glycol)) and the aldehyde moiety in the hydrogel. The BMP peptide was grafted by the reaction between the azide moiety of Az-mPEG-BMP and the propargyl moiety in the hydrogel. The hydrogels seeded with BMS cells were characterized by biochemical, immunocytochemical, and mRNA analyses. Groups included RGD control hydrogel (RGD), RGD and BMP peptides without OPD (RGD+BMP), RGD and BMP peptides with mutant OPD (RGD+BMP+mOPD), and RGD and BMP peptides with OPD (RGD+BMP+OPD) grafted hydrogels. The extent of mineralization of RGD, RGD+BMP, RGD+BMP+mOPD, and RGD+BMP+OPD groups after 28 days was 650 ± 70, 990 ± 30, 850 ± 30, and 1150 ± 40 mg/(mg of DNA), respectively, indicating that the BMP and OPD peptides enhanced osteogenic differentiation of the BMS cells. The BMS cells seeded on RGD+BMP+OPD grafted hydrogels stained positive for vasculogenic markers α-SMA, PECAM-1, and VE-cadherin while the groups without OPD peptide (RGD+BMP and RGD+BMP+mOPD) stained only for α-SMA but not PECAM-1 or VE-cadherin. These results were consistent with the significantly higher PECAM-1 mRNA expression for RGD+BMP+OPD group after 21 and 28 days, compared to the groups without OPD. These findings suggest that the RGD+BMP+OPD peptides provide a favorable microenvironment for concurrent osteogenic and vasculogenic differentiation of progenitor marrow-derived cells.  相似文献   

10.
Loops at protein–protein interfaces are a rich source of peptide leads that have high specificity and low toxicity. Although such peptides typically need to be constrained to overcome thermodynamic and metabolic limitations, design guidelines to obtain a successfully constrained peptides, and thus facilitate the transition from loop to drug, are relatively poorly formulated. In this work, we surveyed the structures of interface loops and found the position of the terminal residues to be a key determinant of conformation. We used this knowledge to improve the process of molecular grafting, a valuable approach for constraining and stabilising peptides by fusing them to a suitable scaffold. We show that an informed choice of where a loop is “anchored” to a scaffold improves its form and function. This knowledge can help guide the choice of loop and its matching scaffold, and thus increase the success rate for designing stable and potent peptide drug leads.  相似文献   

11.
Characterization of matrix metalloprotease (MMP) activities is of increasing interest for cancer prognosis or treatment follow-up. Indeed, MMP-1, -2 and -9 are widely involved in the growth of many tumors and progression steps such as angiogenesis, invasion, and metastasis. Fluorogenic peptide MMP substrates were previously synthesized with the aim of detecting MMP activities. One of their drawbacks is their limited solubility in biological media. Grafting them onto a solid support represented a novel way to yield efficient analysis devices whilst at the same time decreasing the quantities of peptides used. Novel peptide arrays were designed in order to detect MMP activities in biological fluids. Silicon plates were used as the solid support for the design of these novel tools. These were functionalized by organic self-assembled monolayers (SAMs) on which fluorogenic peptides were covalently coupled. SAM and peptide grafting on silicon plates were confirmed by epifluorescence, ellipsometry, and FT-IR analysis. Enzymatic assays were monitored by fluorescence spectrometry and showed that immobilized linear peptides were recognized and cleaved by MMPs.  相似文献   

12.
Nanomechanical properties of end grafted polymer layers were studied by AFM based, colloidal probe compression measurements. Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) brush was grafted from planar Si surface and poly(methyl methacrylate) (PMAA) brush was grown on colloidal probe by surface initiated atom transfer radical polymerization. PMAA brush was further modified with adhesion promoting arginyl-glycyl-aspartic acid (RGD) peptide sequences. Force–distance curves were obtained for systems where the polymer brushes were probed on unmodified surfaces or face to each other. For each systems the grafting density of the polymer brush was determined applying a ‘box’ like polymer brush model based on the theory by de Gennes. ‘Average’ grafting density was calculated in cases when two polymer brushes face each other: RGD functionalized PMAA or PMAA against PSBMA. For our systems the values for the grafting density was between 0.04 and 0.11 nm?2. Furthermore the measured approach force–distance curves were fitted according to the Hertz model and the apparent Young’s modulus was determined for all measurements being in a range of around 250 kPa at physiological conditions.  相似文献   

13.
We have developed a general method combining photochemical grafting and copper-catalyzed click chemistry for biofunctionalization of titanium substrates. The UV-activated grafting of an α,ω-alkenyne onto TiO(2)/Ti substrates provided a "clickable" thin film platform. The selective attachment of the vinyl end of the molecule to the surface was achieved by masking the alkynyl end with a trimethylgermanyl (TMG) protecting group. Subsequently, various oligo(ethylene glycol) (OEG) derivatives terminated with an azido group were attached to the TMG-alkynyl modified titanium surface via a one-pot deprotection/click reaction. The films were characterized by X-ray photoelectron spectroscopy (XPS), contact angle goniometry, ellipsometry, and atomic force microscopy (AFM). We showed that the titanium surface presenting click-immobilized OEG substantially suppressed the nonspecific attachment of protein and cells as compared to the unmodified titanium substrate. Furthermore, glycine-arginine-glycine-aspartate (GRGD), a cell adhesion peptide, was coimmobilized with OEG on the platform. We demonstrated that the resultant GRGD-presenting thin film on Ti substrates can promote the specific adhesion and spreading of AsPC-1 cells.  相似文献   

14.
以高密度梳状PEG(CPEG)作为表面改性材料, 将PEG末端羟基转化为醛基, 将梳状PEG和线形PEG固定在氨基化的PET膜表面, 并利用表面的反应性醛基进一步固定了氨基酸和整合素配体多肽片段RGD多肽. 红外光谱、 接触角和X射线光电子能谱(XPS)测定结果表明, 该法可有效地固定氨基酸和多肽, 获得模拟细胞膜中多糖-蛋白质复合物结构的特异性功能表面. 对两种不同结构的PEG细胞培养实验结果表明, CPEG比线形PEG(LPEG)具有更好的抗非特异粘附性. 此外, CPEG比LPEG具有更多的活性反应基团, 用PEG末端活性的醛基固定整合素配体多肽片段RGD, 可有效地诱导材料表面的内皮细胞化, 改善材料的细胞相容性.  相似文献   

15.
RGDS (Arg-Gly-Asp-Ser) is immobilized on poly(L-lactic acid) (PLLA) with ozone oxidation and the addition of an intermediate reactant, acryl succinimide (ASI) to promote the grafting efficiency. A DPPH (2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl) assay has revealed that the peroxide concentration can be controlled by adjusting the ozone treatment time. The immobilization of ASI is verified by elemental analysis. The peptide concentrations are in the effective order, as shown by means of high performance liquid chromatography (HPLC), and the grafting efficiency is proven to be relatively high compared with the previous studies. The culture of rat osteosarcoma 17/2.8 (ROS), osteoblastic-like cells, demonstrates that the grafting of RGDS can enhance the attachment and osteogenesis of ROS cells on PLLA. With the addition of ASI, the cultured ROS cells express normal function in proliferation and mineralization. From in vivo experiments, ASI immobilized on the surface is shown to be biocompatible. These results lead to the conclusion that the ozone treatment with the intermediate reactant ASI is an efficient, biocompatible, and easily controllable procedure to modify PLLA. Furthermore, the immobilization of RGDS in significant amounts following the ozone oxidation could further promote the biocompatibility and the osteoinduction of PLLA.  相似文献   

16.
We report on a new surface modification method for grafting a "dynamic" property for on-demand activation of the click reaction. Our approach utilizes the acetylene group masked with dicobalt hexacarbonyl, Co(2)(CO)(6), which is not reactive toward the click reaction. Electrochemical treatment reveals the acetylene group on the selected region, which is then used as a chemical handle for surface functionalization via the click reaction with an azide-containing molecule. Electrochemical and chemical conversions on the surface were verified by cyclic voltammetry, X-ray photoelectron spectroscopy, and fluorescence spectroscopy. We have demonstrated immobilization of an azide-modified RGD peptide and promotion of cell adhesion/migration to the region of electrochemical induction.  相似文献   

17.
Thermoreversible polymeric biomaterials are finding increased acceptance in tissue engineering applications. One drawback of the polymers is their synthetic nature, which does not allow direct interaction of mammalian cells with the polymers. This limitation may be alleviated by grafting arginine–glycine–aspartic acid (RGD) containing peptides onto the polymer backbone to facilitate interactions with cell‐surface integrins. Toward this goal, N‐isopropylacrylamide (NiPAM)‐based thermoreversible polymers containing amine‐reactive N‐acryloxysuccinimide (NASI) groups were synthesized. Conjugation of RGD‐containing peptides to polymers was demonstrated with 1H NMR spectroscopy and reverse‐phase high‐pressure liquid chromatography. The conjugation reaction was optimal at 4 °C and pH of 8.0, and increased with the increasing NASI content of polymers. With a peptide grafting ratio of 0.25 mol %, there was no significant change in the lower critical solution temperature of the polymers. Finally, the NASI‐containing polymers, cast as films, on tissue culture polystyrene, were shown to conjugate to RGD‐containing peptides and support C2C12 cell attachment. We conclude that NASI‐containing thermoreversible polymers are amenable for grafting biomimetic peptides to impart cell adhesiveness to the polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3989–4000, 2003  相似文献   

18.
Well‐defined peptide‐poly(ε‐caprolactone) (Pep‐PCL) biohybrids were successfully synthesized by grafting‐from ring‐opening polymerization (ROP) of ε‐caprolactone (CL) using designed amine‐terminated sequence‐defined peptides as macroinitiators. MALDI‐TOF‐MS and 1H NMR analyses confirmed the successful attachment of peptide to the PCL chain. The gel permeation chromatography (GPC) measurement showed that the Pep‐PCL biohybrids with controllable molecular weights and low polydispersities (PDI <1.5) were obtained by this approach. The aggregation of Pep‐PCL hybrid molecules in THF solution resulted in the formation of micro/nanospheres as confirmed through FESEM, TEM, and DLS analyses. The circular dichroism study revealed that the secondary structure of peptide moiety was changed in the peptide‐PCL biohybrids. The crystallization and melting behavior of Pep‐PCL hybrids were somewhat changed compared with that of neat PCL of comparable molecular weight as revealed by DSC and XRD measurements. In Pep‐PCL biohybrids, extinction rings were observed in the PCL spherulites, in contrast with the normal spherulite morphology of the neat PCL. There was a substantial decrease (4–5 folds) in the spherulitic growth rate after the incorporation of peptide moiety at the end of PCL chain as measured by polarizing optical microscopy. Pseudomonas lipase catalyzed enzymatic degradation was studied for Pep‐PCL hybrids and neat PCL. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Three types of resins, related to the spacer, environmental and microenvironmental models were prepared by grafting commercial AMP polymer with 2-[2-(2-aminoethylamino)-2-oxoethoxy]acetic acid. All resins were highly loaded and functionalized with Rink-amide linker. A comparative synthesis of the classic difficult sequence ACP (65-74) on the prepared resins by Fmoc/t-Bu chemistry is presented. The ‘microenviromental’ model resin afforded the crude peptide in the highest purity (98%).  相似文献   

20.
Macroinitiators with primary amino substituents were synthesized by one of the following techniques: a) cyanoethylation of cellulose followed by diborane reduction to produce aminopropylcellulose, 1; b) nitration, then SnCl2 reduction of poly(arylene ether sulfone), 5, to produce poly(2-aminoarylene ether sulfone), 2; c) phthalimidation of 5 followed by hydrazinolysis to yield poly(2-aminomethylarylene ether sulfone), 3; and d) LiAlH4 reduction of poly(cyanophenylene arylene ether) to poly(aminomethylphenylene arylene ether), 4. Heterogeneous grafting of Λ-benzyl-L-glutamate-N-carboxyanhydride, 8, to Polymer 1 resulted in a nonrandom distribution of amino acid residues; α-helical conformations were detected at low BLG-NCA/NH2 ratios (<5 amino acids). Using molar ratios ranging from 1 to 100 of 8, relative to the amine concentration, grafting to Polymers 3 and 4 was effected in anhydrous THF at room temperature under homogeneous conditions. If reaction times between 24 and 48 h are utilized, high grafting efficiencies (>80%) are obtained. The conformation of the polypeptide chain was evaluated by NMR and infrared spectroscopy. Polypeptides grafted to Polymers 3 and 4 appeared to adopt the expected conformation for the chain length predicted, i.e., a progression from random coil (<8 amino acids) to β-pleated sheet (8–13 amino acids) to α-helix (> 13 amino acids). The benzyl ester functions on the BLG grafts are subject to direct modification with amine nucleophiles; studies with butylamine correlate reaction conditions with extent of ester vs peptide cleavage. In the presence of 1-hydroxybenzotriazole, aminolysis of the ester is favored and conversions to Λ-amides up to 75% without peptide cleavage are achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号