首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王玉荣  杨日福 《应用声学》2023,42(2):357-362
该研究旨在研究双泡模型的自然共振频率对超声空化的影响,通过理论计算研究了自然共振频率的影响因素,以及单频超声和双频超声与自然共振频率的关系。研究结果表明:气泡初始半径是影响自然共振频率的主要因素;低频驱动下的非线性波动程度会比高频的更加剧烈,当驱动频率等于气泡自然共振频率时,超声空化的效果更好;双频超声取气泡自然共振频率时超声空化效果远远优于单频超声驱动。该研究在超声医学和理解超声空化特性方面有着重要的意义。  相似文献   

2.
胡静  林书玉  王成会  李锦 《物理学报》2013,62(13):134303-134303
从球状泡群气泡动力学方程出发, 考虑泡群间次级声辐射的影响, 得到了声场中两泡群共同存在时气泡振动的动力学方程, 并以此为基础探讨声波驱动下双泡群振动系统的共振响应特征. 由于泡群间气泡间的相互作用, 系统存在低频共振和高频共振现象, 两不同共振频率的数值与泡群内气泡的本征频率相关. 泡群内气泡的本征频率又受到初始半径、泡群大小和泡群内气泡数量的影响. 气泡自由振动和驱动声波的耦合激起泡群内气泡的受迫振动, 气泡初始半径、气泡数密度和驱动声波频率等都会影响泡群内气泡的振动幅值和初相位. 关键词: 气泡群 共振 声响应 超声空化  相似文献   

3.
徐珂  许龙 《应用声学》2021,40(3):343-349
为了模拟单泡超声空化的动力学特性,建立了单泡超声空化的有限元仿真模型,基于流体动力学控制方程和流体体积分数模型,利用有限元分析软件模拟了超声驱动下水中单泡的空化动力学过程。结果表明:单泡随时间的演化规律是先缓慢膨胀到最大后迅速塌缩;泡内压强与气体密度变化与单泡体积变化成反比;在膨胀阶段,泡外压强与气体密度沿着泡的径向向外递减;在压缩阶段,泡外在声压垂直方向的压强与气体密度要大于声压激励方向的压强和气体密度。该文分析结果将为超声空化动力学过程模拟及研究提供参考。  相似文献   

4.
杨日福  洪旭烨 《应用声学》2018,37(4):455-461
本文基于流体动力学控制方程和VOF模型,在FLUENT 14.5软件环境下对超声空化泡进行数值模拟。首先研究了超声空化泡一个周期内的形态变化,并且利用空化泡形态变化的最大面积、最小面积、膨胀时间、收缩时间等数值结果分析超声参数对空化效果的影响。同时探究了双频超声作用下空化泡运动的变化,计算结果表明:在其他条件相同的情况下,在1~5MPa范围内,超声声压幅值为3MPa时空化效果最好;当超声频率大于20kHz时,空化效果随着超声频率的增大而降低。对于频率相同的双频超声,较声压幅值为其两倍的单频超声有更好的空化效果;对于频率不同的双频超声,空化效果受到频率差的影响。  相似文献   

5.
Due to its physical and/or chemical effects, acoustic cavitation plays a crucial role in various emerging applications ranging from advanced materials to biomedicine. The cavitation bubbles usually undergo oscillatory dynamics and violent collapse within a viscoelastic medium, which are closely related to the cavitation-associated effects. However, the role of medium viscoelasticity on the cavitation dynamics has received little attention, especially for the bubble collapse strength during multi-bubble cavitation with the complex interactions between size polydisperse bubbles. In this study, modified Gilmore equations accounting for inter-bubble interactions were coupled with the Zener viscoelastic model to simulate the dynamics of multi-bubble cavitation in viscoelastic media. Results showed that the cavitation dynamics (e.g., acoustic resonant response, nonlinear oscillation behavior and bubble collapse strength) of differently-sized bubbles depend differently on the medium viscoelasticity and each bubble is affected by its neighboring bubbles to a different degree. More specifically, increasing medium viscosity drastically dampens the bubble dynamics and weakens the bubble collapse strength, while medium elasticity mainly affects the bubble resonance at which the bubble collapse strength is maximum. Differently-sized bubbles can achieve resonances and even subharmonic resonances at high driving acoustic pressures as the elasticity changes to certain values, and the resonance frequency of each bubble increases with the elasticity increasing. For the interactions between the size polydisperse bubbles, it indicated that the largest bubble generally has a dominant effect on the dynamics of smaller ones while in turn it is almost unaffected, exhibiting a pattern of destructive and constructive interactions. This study provides a valuable insight into the acoustic cavitation dynamics of multiple interacting polydisperse bubbles in viscoelastic media, which may offer a potential of controlling the medium viscoelasticity to appropriately manipulate the dynamics of multi-bubble cavitation for achieving proper cavitation effects according to the desired application.  相似文献   

6.
Inertial cavitation thresholds, which are defined as bubble growth by 2-fold from the equilibrium radius, by two types of ultrasonic excitation (at the classical single-frequency mode and dual-frequency mode) were calculated. The effect of the dual-frequency excitation on the inertial cavitation threshold in the different surrounding media (fluid and tissue) was studied, and the paramount parameters (driving frequency, amplitude ratio, phase difference, and frequency ratio) were also optimized to maximize the inertial cavitation. The numerical prediction confirms the previous experimental results that the dual-frequency excitation is capable of reducing the inertial cavitation threshold in comparison to the single-frequency one at the same output power. The dual-frequency excitation at the high frequency (i.e., 3.1 + 3.5 MHz vs. 1.1 + 1.3 MHz) is preferred in this study. The simulation results suggest that the same amplitudes of individual components, zero phase difference, and large frequency difference are beneficial for enhancing the bubble cavitation. Overall, this work may provide a theoretical model for further investigation of dual-frequency excitation and guidance of its applications for a better outcome.  相似文献   

7.
声场作用下两空化泡相互作用的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
张鹏利  林书玉 《物理学报》2009,58(11):7797-7801
建立了声场作用下两空化泡泡壁的运动方程,得出了双空化泡的共振频率,振动半径及空化噪声声压.由频率方程,振动半径和声压方程可以看出两气泡的运动情况与单气泡的运动情况有着明显的不同.共振频率,共振振幅及声压与两气泡之间的间距有关.在一定的简化条件下,运用MATLAB语言对共振频率,共振振幅及空化噪声声压进行了数值求解,发现共振频率和共振振幅随空泡间距的增大而增大,空化噪声声压随距离增大先增大后减小. 关键词: 超声 空化 频率 声压  相似文献   

8.
流体体积法(VOF)可以便捷、高效地实现对多相流界面的捕捉和追踪。本文基于VOF方法,对单个空化泡在曲面固壁附近的运动进行了数值模拟,从实验对比、压力场、速度场、温度场演化、溃灭时间、射流速度、固壁温度等方面分析了空化泡溃灭过程的热动力学影响。结果表明,数值模拟得到的空化泡形态演化与实验观测到的现象一致,随着位置参数、泡内外压差及曲面固壁尺寸的改变,空化泡热动力学行为也将发生变化,受到流体运动及射流冲击的影响,溃灭瞬间产生的高温高压使得曲面固壁温度升高。本文研究的曲面固壁附近空化泡溃灭效应,揭示了空化泡与曲面固壁间的相互作用规律,对学术研究及工程应用都具有重要意义。  相似文献   

9.
In a previous study, we found that cavitation bubbles cause the ultrasonic destruction of microcapsules containing oil in a shell made of melamine resin. The cavitation bubbles can be smaller or larger than the resonance size; smaller bubbles cause Rayleigh contraction, whereas larger bubbles are not involved in the sonochemical reaction. The activity in and around the bubble (e.g., shear stress, shock wave, microjet, sonochemical reaction, and sonoluminescence) varies substantially depending on the bubble size. In this study, we investigated the mechanism of the ultrasonic destruction of microcapsules by examining the correlations between frequency and microcapsule destruction rate and between microcapsule size and cavitation bubble size. We evaluated the bubbles using multibubble sonoluminescence and the bubble size was changed by adding a surfactant to the microcapsule suspension. The microcapsule destruction was frequency dependent. The main cause of microcapsule destruction was identified as mechanical resonance, although the relationship between bubble size and microcapsule size suggested that bubbles smaller than or equal to the microcapsule size may also destroy microcapsules by applying shear stress locally.  相似文献   

10.
沈壮志 《物理学报》2015,64(12):124702-124702
以水为工作介质, 考虑了液体的可压缩性, 研究了驻波声场中空化泡的运动特性, 模拟了驻波场中各位置处空化泡的运动状态以及相关参数对各位置处空化泡在主Bjerknes力作用下运动方向的影响. 结果表明: 驻波声场中, 空化泡的运动状态分为三个区域, 即在声压波腹附近空化泡做稳态空化, 在偏离波腹处空化泡做瞬态空化, 在声压波节附近, 空化泡在主Bjerknes 力作用下, 一直向声压波节处移动, 显示不发生空化现象; 驻波场中声压幅值增加有利于空化的发生, 但声压幅值增加到一定上限时, 压力波腹区域将排斥空化泡, 并驱赶空化泡向压力波节移动, 不利于空化现象的发生; 当声频率小于初始空化泡的共振频率时, 声频率越高, 由于主Bjerknes 力的作用将有更多的空化泡向声压波节移动, 不利于空化的发生, 尤其是驻波场液面的高度不应是声波波长的1/4; 当声频率一定时, 空化泡初始半径越大越有利于空化现象的发生, 但当空化泡的初始半径超过声频率的共振半径时, 由于主Bjerknes力的作用将有更多的空化泡向声压波节移动, 不利于空化的发生.  相似文献   

11.
Using dynamical density functional theory and Brownian dynamics simulations, we investigate the influence of a driven tracer particle on the density distribution of a colloidal suspension at a thermodynamic state point close to the liquid side of the binodal. In bulk systems, we find that a localised region of the colloid-poor phase, a ‘cavitation bubble’, forms behind the moving tracer. The extent of the cavitation bubble is investigated as a function of both the size and velocity of the tracer. The addition of a confining boundary enables us to investigate the interaction between the local phase instability at the substrate and that at the particle surface. When both the substrate and tracer interact repulsively with the colloids we observe the formation of a colloid-poor bridge between the substrate and the tracer. When a shear flow is applied parallel to the substrate the bridge becomes distorted and, at sufficiently high shear-rates, disconnects from the substrate to form a cavitation bubble.  相似文献   

12.
双泡超声空化计算分析   总被引:4,自引:0,他引:4       下载免费PDF全文
卢义刚  吴雄慧 《物理学报》2011,60(4):46202-046202
将由速度势叠加原理得到的双泡超声空化动力学微分方程归一化,通过matlab语言编程计算,分析了水中空化泡的线度、双泡间距、声压幅值、声波频率等因素对空化过程的影响. 在双泡超声空化动力学微分方程中引入双频超声,探讨了双泡双频超声问题. 研究表明泡的线度是决定空化特性的主要因素,声压幅值对空化特性的影响最大,其次是超声波的频率;双泡间的相互作用影响空化特性,这种影响随双泡间距的增大而减弱;双频超声对双泡空化特性的影响有限,这种影响在两超声分量的声压幅值相等时较强. 关键词: 超声空化 双泡 双频超声  相似文献   

13.
The use of a top-mounted electromagnetic induction coil has been demonstrated as a contactless alternative to traditional ultrasonic treatment (UST) techniques that use an immersed mechanical sonotrode for the treatment of metals in the liquid state. This method offers similar benefits to existing UST approaches, including degassing, grain refinement, and dispersion of nanoparticles, while also preventing contact contamination due to erosion of the sonotrode. Contactless treatment potentially extends UST to high temperature or reactive melts. Generally, the method relies on acoustic resonance to reach pressure levels suitable for inertial cavitation and as a result the active cavitation volume tends to lie deep in the melt rather than in the small volume surrounding the immersed sonotrode probe. Consequently, (i) with suitable tuning of the coil supply frequency for resonance, the treatment volume can be made arbitrarily large, (ii) the problem of shielding and pressure wave attenuation suffered by the immersed sonotrode is avoided. However, relying on acoustic resonance presents problems: (i) the emergence of bubbles alters the speed of sound, resonance is momentarily lost, and cavitation becomes intermittent, (ii) as sound waves travel through and reflect on all the materials surrounding the melt, the sound characteristics of the crucible and supporting structures need to be carefully considered. The physics of cavitation coupled with this intermittent behaviour poses a challenge to sonotrode modelling orthodoxy, a problem we are trying to address in this publication. Two alternative approaches will be discussed, one of which is in the time domain and one in the frequency domain, which couple the solution of a bubble dynamics solver with that of an acoustics solver, to give an accurate prediction of the acoustic pressure generated by the induction coil. The time domain solver uses a novel algorithm to improve simulation time, by detecting an imminent bubble collapse and prescribing its subsequent behaviour, rather than directly solving a region that would normally require extremely small time steps. This way, it is shown to predict intermittent cavitation. The frequency domain solver for the first time couples the nonlinear Helmholtz model used for studying cavitation, with a background source term for the contribution of Lorentz forces. It predicts comparable RMS pressures to the time domain solver, but not the intermittent behaviour due to the underlying harmonic assumption. As further validation, the frequency domain method is also used to compare the generated acoustic pressure with that of traditional UST using a mechanical sonotrode.  相似文献   

14.
《Ultrasonics sonochemistry》2014,21(4):1496-1503
Changes in the cavitation intensity of gases dissolved in water, including H2, N2, and Ar, have been established in studies of acoustic bubble growth rates under ultrasonic fields. Variations in the acoustic properties of dissolved gases in water affect the cavitation intensity at a high frequency (0.83 MHz) due to changes in the rectified diffusion and bubble coalescence rate. It has been proposed that acoustic bubble growth rates rapidly increase when water contains a gas, such as hydrogen faster single bubble growth due to rectified diffusion, and a higher rate of coalescence under Bjerknes forces. The change of acoustic bubble growth rate in rectified diffusion has an effect on the damping constant and diffusivity of gas at the acoustic bubble and liquid interface. It has been suggested that the coalescence reaction of bubbles under Bjerknes forces is a reaction determined by the compressibility and density of dissolved gas in water associated with sound velocity and density in acoustic bubbles. High acoustic bubble growth rates also contribute to enhanced cavitation effects in terms of dissolved gas in water. On the other hand, when Ar gas dissolves into water under ultrasound field, cavitation behavior was reduced remarkably due to its lower acoustic bubble growth rate. It is shown that change of cavitation intensity in various dissolved gases were verified through cleaning experiments in the single type of cleaning tool such as particle removal and pattern damage based on numerically calculated acoustic bubble growth rates.  相似文献   

15.
The amplitude of the acoustic pressure required to nucleate a gas or vapor bubble in a fluid, and to have that bubble undergo an inertial collapse, is termed the inertial cavitation threshold. The magnitude of the inertial cavitation threshold is typically limited by mechanisms other than homogeneous nucleation such that the theoretical maximum is never achieved. However, the onset of inertial cavitation can be suppressed by increasing the static pressure of the fluid. The inertial cavitation threshold was measured in ultrapure water at static pressures up to 30?MPa (300 bars) by exciting a radially symmetric standing wave field in a spherical resonator driven at a resonant frequency of 25.5 kHz. The threshold was found to increase linearly with the static pressure; an exponentially decaying temperature dependence was also found. The nature and properties of the nucleating mechanisms were investigated by comparing the measured thresholds to an independent analysis of the particulate content and available models for nucleation.  相似文献   

16.
Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga–In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid.  相似文献   

17.
18.
姚熊亮  叶曦  张阿漫 《物理学报》2013,62(24):244701-244701
基于波动方程给出了计及可压缩性的边界积分方程. 以此为基础,求解行波驱动下非球状空泡的运动规律及其运动稳定性,并分析比较了行波频率、幅值以及初相位对空泡运动特性的影响. 研究结果表明:较高的行波频率与较低的幅值是空泡稳定运动的充分条件. 在一定幅值和频率的行波驱动下,空泡将在收缩阶段末期形成与行波传播方向相同的高速射流;计及流场可压缩性后,空泡脉动一次的时间减短,幅度减弱,射流顶点速度以及空泡内部压力的峰值随之减小;随着行波频率的增大或是幅值的降低,空泡脉动幅度与射流强度逐渐减弱;行波初相位的变化使空泡的初始运动状态随之改变,并影响非球状变形时的射流强度. 关键词: 可压缩 空泡 行波 运动特性  相似文献   

19.
超声波降解有机物溶液的气泡动力学研究   总被引:1,自引:0,他引:1  
徐峥  许坚毅  刘晓峻 《声学学报》2009,34(2):180-186
在超声波降解有机物溶液过程中,超声空化产生的高温高压以及空化泡振荡产生的激波在有机物溶液的降解中发挥重要作用.本文通过对超声波作用下气泡动力学的研究,讨论了超声波声压、频率、气泡初始半径等参量对有机物溶液降解效率的影响.研究发现,存在使降解效率极大的声压和频率。在空化稳定的情况下,存在一个使降解效率极大的气泡初始半径,降解效率随着黏滞系数的增大而减小。研究还发现,双频超声作用的空化效果比单频超声作用时强,与双频超声作用下有机物溶液降解率较大这一实验结果一致。   相似文献   

20.
Pairs of unequal strength, counter-rotating vortices were produced in order to examine the inception, dynamics, and acoustic emission of cavitation bubbles in rapidly stretching vortices. The acoustic signatures of these cavitation bubbles were characterized during their inception, growth, and collapse. Growing and collapsing bubbles often produced a sharp, broadband, pop sound. The spectrum of these bubbles, and the peak resonant frequency can generally be related to quiescent flow bubble dynamics and corresponding resonant frequencies. However, some elongated cavitation bubbles produced a short tonal burst, or chirp, with frequencies on the order of a few kilohertz. Theses frequencies are too low to be related to resonant frequencies of a bubble in a quiescent flow. Instead, the frequency content of the acoustic signal during bubble inception and growth is related to the volumetric oscillations of the bubble while it interacted with vortical flow that surrounds the bubble (i.e., the resonant frequency of the vortex-bubble system). A relationship was determined between the observed peak frequency of the oscillations, the highly stretched vortex properties, and the water nuclei content. It was found that different cavitation spectra could relate to different flow and fluid properties and therefore would not scale in the same manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号