共查询到20条相似文献,搜索用时 0 毫秒
1.
5-羟甲基糠醛(HMF)作为一种重要且多用途的生物质基平台化合物,可被转化为多种高附加值化学品,如乙酰丙酸、2,5-二甲基呋喃、2,5-呋喃二甲酸、2,5-呋喃二甲醇、γ-戊内酯、5-氨基乙酰丙酸等,而这些化学品可进一步作为化石燃料替代品、燃料添加剂或作为聚合物单体或医药产品等进行应用。葡萄糖是由纤维素水解大量得到的六碳单糖,由葡萄糖制备HMF是生物质资源最大化利用的有效途径之一。本文通过对近几年HMF制备方法的概述,分别由催化剂、反应体系两方面进行分类总结葡萄糖基碳水化合物制备HMF的研究进展,并对其各个反应过程的催化活性、反应体系稳定性和应用前景进行了总结归纳。随后论述了用于HMF制备的多种溶剂体系(诸如单相体系、双相体系、离子液体和低共熔溶剂体系)。最后,结合目前葡萄糖制备HMF过程中存在的问题,对未来工作的研究重点进行了展望,以期为相关研究者提供参考。 相似文献
2.
3.
4.
研究了碱金属卤化物对AlCl3催化葡萄糖转化制备5-羟甲基糠醛(HMF)的促进作用. 结果表明,NaF对反应有显著抑制作用,而NaI和NaBr对反应有显著促进作用,而且NaI比NaBr的促进效果更明显. 在N,N-二甲基乙酰胺(DMAC)中,以NaI为添加剂,130 ℃反应15 min,AlCl3催化葡萄糖转化制备HMF,葡萄糖转化率由71%提高到86%,HMF收率由36%提高到62%. AlCl3-NaI-DMAC体系也可用于果糖、甘露糖等单糖,蔗糖、麦芽糖、纤维二糖等二糖,以及菊粉等多糖的转化. 以蔗糖为原料,HMF收率可达63%. 相似文献
5.
6.
5-羟甲基糠醛(HMF)是一种具有重要应用价值的原材料和中间体,以果糖脱水合成HMF具有实现生物质转化利用的重大意义。本文综述了近三年来果糖制备HMF过程的两大关键因素:催化剂和反应介质的重要进展。固体酸(特别是杂多酸及其盐)、离子液体(ILs)中添加卤化物或ILs作为催化剂是近几年来研究的热点,固体酸的优点是可多次重复使用且易于分离,而ILs中果糖的降解条件较温和,副反应较少。目前,用于果糖转化HMF的反应溶剂优、缺点并存。最后对该反应存在的问题和今后的研究进行了总结和展望。 相似文献
7.
5-羟甲基糠醛(HMF)是一种具有重要应用价值的原材料和中间体,以果糖脱水合成HMF具有实现生物质转化利用的重大意义。本文综述了近三年来果糖制备HMF过程的两大关键因素:催化剂和反应介质的重要进展。固体酸(特别是杂多酸及其盐)、离子液体(ILs)中添加卤化物或ILs作为催化剂是近几年来研究的热点,固体酸的优点是可多次重复使用且易于分离,而ILs中果糖的降解条件较温和,副反应较少。目前,用于果糖转化HMF的反应溶剂优、缺点并存。最后对该反应存在的问题和今后的研究进行了总结和展望。 相似文献
8.
9.
10.
11.
12.
以蒸馏后的乙烯焦油重组分为原料,采用交联-磺化法制备了乙烯焦油炭磺酸。 利用红外光谱(FT-IR)、X射线衍射(XRD)、拉曼光谱(Raman)、热重分析(TGA-DTG)、扫描电子显微镜(SEM)等手段对该催化剂进行结构和性能表征。 结果表明,该催化剂呈现无定形石墨碳结构,且具有较高的酸量(4.20 mmol/g),表面的磺酸官能团是其关键活性中心。 并将该催化剂用于果糖脱水合成5-羟甲基糠醛(5-HMF)的反应,在130 ℃反应140 min,催化剂用量0.3 g、溶剂用量8 mL及助剂用量0.3 g的条件下,果糖转化率和5-HMF产率分别为96.2%和52.1%,分离得到的5-HMF纯度可达97.0%。催化剂循环使用5次后,果糖的转化率和5-HMF的产率分别保持在85.1%和40.8%以上。 相似文献
13.
14.
化学工业生产中,用氢气为还原剂,通过选择性加氢可以制备多种重要化学品。5-羟甲基糠醛是重要的生物质基平台化合物,而5-甲基糠醛是用途广泛的化学品。由5-羟甲基糠醛加氢得到5-甲基糠醛是一条非常理想的路径,但是选择性活化C-OH非常困难。本文设计并制备了Pt@PVP/Nb2O5(PVP: 聚乙烯吡咯烷酮)催化剂,该催化体系巧妙地结合了位阻效应、氢溢流和催化剂界面的电子效应,系统研究了该催化剂对5-羟甲基糠醛选择性加氢制备5-甲基糠醛催化性能,在最优条件下,5-甲基糠醛的选择性可达92%。利用密度泛函理论计算研究了5-羟甲基糠醛选择性加氢制备5-甲基糠醛反应路径。 相似文献
15.
Shaopeng Li Jing Du Bin Zhang Yanzhen Liu Qingqing Mei Qinglei Meng Minghua Dong Juan Du Zhijuan Zhao Lirong Zheng Buxing Han Meiting Zhao Huizhen Liu 《物理化学学报》2023,38(10):2206019
Selective hydrogenation is a vital class of reaction. Various unsaturated functional groups in organic compounds, such as aromatic rings, alkynyl (C≡C), carbonyl (C=O), nitro (-NO2), and alkenyl (C=C) groups, are typical targets in selective hydrogenation. Therefore, selectivity is a key indicator of the efficiency of a designed hydrogenation reaction. 5-(Hydroxymethyl)furfural (HMF) is an important platform compound in the context of biomass conversion, and recently, the hydrogenation of HMF to produce fuels and other valuable chemicals has received significant attention. Controlling the selectivity of HMF hydrogenation is paramount because of the different reducible functional groups (C=O, C-OH, and C=C) in HMF. Moreover, the exploration of new routes for hydrogenating HMF to valuable chemicals is becoming attractive. 5-Methylfurfural (MF) is also an important organic compound; thus, the selective hydrogenation of HMF to MF is an essential synthetic route. However, this reaction has challenging thermodynamic and kinetic aspects, making it difficult to realize. Herein, we propose a strategy to design a highly efficient catalytic system for selective hydrogenation by exploiting the synergy between steric hindrance and hydrogen spillover. The design and preparation of the Pt@PVP/Nb2O5 catalyst (PVP = polyvinyl pyrrolidone; Nb2O5 = niobium(V) oxide) were also conducted. Surprisingly, HMF could be converted to MF with 92% selectivity at 100% HMF conversion. The reaction pathway was revealed through the combination of control experiments and density functional theory calculations. Although PVP blocked HMF from accessing the surface of Pt, hydrogen (H2) could be activated on the surface of Pt due to its small molecular size, and the activated H2 could migrate to the surface of Nb2O5 through a phenomenon called H2 spillover. The Lewis acidic surface of Nb2O5 could not adsorb the C=O group but could adsorb and activate the C-OH group of HMF; therefore, when HMF was adsorbed on Nb2O5, the C-OH groups were hydrogenated by the spilled over H2 to form MF. The high selectivity of this reaction was realized because of the unique combination of steric effects, hydrogen spillover, and tuning of the electronic states of the Pt and Nb2O5 surfaces. This new route for producing MF has great potential for practical application owing to its discovered advantages. We believe that this novel strategy can be used to design catalysts for other selective hydrogenation reactions. Furthermore, this study demonstrates a significant breakthrough in selective hydrogenation, which will be of interest to researchers working on the utilization of biomass, organic synthesis, catalysis, and other related fields.
相似文献
16.
以MCM-41、HZSM-5以及丝光沸石(MOR)为载体,磷钨酸(PW)为活性组分,通过浸渍法制备一系列负载型磷钨酸催化剂;采用FTIR、XRD、N2-吸附-脱附和NH3程序升温脱附等分析手段对催化剂进行表征.结果表明在负载活性物质过程中,载体骨架未被破坏,PW以无定形结构均匀分散到载体的表面并与载体间存在着明显的键合... 相似文献
17.
离子液体中树脂催化转化果糖为5-羟甲基糠醛 总被引:2,自引:0,他引:2
开发了以离子液体1-丁基-3-甲基咪唑氯盐([BMIM]Cl)为溶剂, 固体酸离子交换树脂NKC-9为催化剂转化果糖为5-羟甲基糠醛的绿色工艺. 在此催化体系中, 100 ℃下反应10 min时5-HMF的产率达到78.0%, 其反应时间远远小于已有文献报道的长达数小时的反应时间. 在此催化体系中, 果糖起始浓度的增加对5-HMF产率影响不大, 因而此工艺同样适用于处理高浓度的果糖溶液. 离子液体[BMIM]Cl和树脂组成的催化体系可以循环使用, 经过9次重复使用后仍能保持稳定的催化活性. 相似文献
18.
19.
研究了氧化石墨烯(GO)催化果糖-氯化胆碱低共熔物脱水制取5-羟甲基糠醛(5-HMF)的反应过程。采用改进的Hummers法制备GO,通过FT-IR、XRD和SEM等手段对GO结构进行了表征。考察了原料量、催化剂量、反应温度和时间等对5-HMF产物收率的影响。结果表明:果糖与氯化胆碱形成低共熔溶剂提高了果糖与GO的接触效率,脱水速率显著提高;在温度110℃,反应时间4h,GO与果糖质量比为1∶50的条件下,5-HMF液相色谱收率达到74. 5%,几乎没有检测到副产物。GO分子中的羧基基团担负着果糖的脱水过程。GO循环使用六次,仍具有较好的催化效果,5-HMF收率基本不变,说明GO重复使用性能良好。 相似文献
20.
2, 5-呋喃二甲酸二甲酯(DMFDCA)这一生物质衍生的增值化学品是石油基聚合物单体对苯二甲酸(TPA)的理想替代品。本研究采用一步共热解法合成了两种廉价金属修饰的氮掺杂多孔碳催化剂CoMn@NC,并将其用于5-羟甲基糠醛(HMF)在温和条件下的需氧氧化。由Co3Mn2@NC-800催化HMF在50 ℃和常压氧气的条件下反应12 h后,得到产率为85%的DMFDCA。多孔催化剂的高比表面积提高了传质效率。Co纳米粒子(NPs)和呈原子级分散的Mn与掺杂在碳中的氮配位形成M―Nx。富含吡啶氮的碳基体中的缺电子金属位点有利于HMF和氧的活化。氧形成的超氧自由基阴离子的存在确保了半缩醛中间体和5-(羟基甲基)-2-糠酸甲酯(HMMF)的羟甲基的脱氢氧化,从而高选择性得到DMFDCA。该催化剂性能稳定,可适用于各种取代芳醇。该催化体系具有用于生产聚合物单体羧基酯的应用潜力。 相似文献