首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a fermentor consisting of four linked stirred towers that can be used for simultaneous saccharification and fermentation (SSF) and for the accumulation of cell mass was applied to the continuous production of ethanol using cassava as the starchy material. For the continuous process with SSF, the pretreated cassava liquor and saccharification enzyme at total sugar concentrations of 175 g/L and 195 g/L were continuously fed to the fermentor with dilution rates of 0.014, 0.021, 0.031, 0.042, and 0.05 h−1. Considering the maximum saccharification time, the highest volumetric productivity and ethanol yield were observed at a dilution rate of 0.042 h−1. At dilution rates in the range of 0.014 h−1 to 0.042 h−1, high production rates were observed, and the yeast in the first to fourth fermentor showed long-term stability for 2 months with good performance. Under the optimal culture conditions with a feed sugar concentration of 195 g/L and dilution rate of 0.042 h−1, the ethanol volumetric productivity and ethanol yield were 3.58 g/L∙h and 86.2%, respectively. The cell concentrations in the first to fourth stirred tower fermentors were 74.3, 71.5, 71.2, and 70.1 g dry cell/L, respectively. The self-flocculating yeast, Saccharomyces cerevisiae CHFY0321, developed by our group showed excellent fermentation results under continuous ethanol production.  相似文献   

2.
In pH-controlled batch fermentations with pure sugar synthetic hardwood hemicellulose (1% [w/v] glucose and 4% xylose) and corn stover hydrolysate (8% glucose and 3.5% xylose) lacking acetic acid, the xyloseutilizing, tetracycline (Tc)-sensitive, genomically integrated variant of Zymomonas mobilis ATCC 39676 (designated strain C25) exhibited growth and fermentation performance that was inferior to National Renewable Energy Laboratory's first-generation, Tc-resistant, plasmid-bearing Zymomonas recombinants. With C25, xylose fermentation following glucose exhaustion wasmarkellyslower, and the ethanol yield (based on sugars consumed) was lower, owing primarily to an increase in lactic acid formation. There was an apparent increased sensitivity to acetic acid inhibition with C25 compared with recombinants 39676:pZB4L, CP4:pZB5, and ZM4:pZB5. However, strain C25 performed well in continous ferm entation with nutrient-rich synthetic corn stover medium over the dilution range 0.03–0.06/h, with a maximum provess ethanol yield at D=0.03/h of 0.46 g/g and a maximum ethanol productivity of 3 g/(L·h). With 0.35% (w/v) acetic acid in the medium, the process yield at D=0.04/h dropped to 0.32 g/g, and the maximum productivity decreased by 50% to 1.5 g/(L·h). Under the same operating conditions, rec Zm Zm 4:pZB5 performed better; however, the medium contained 20 mg/L of Tc to constantly maintain selective pressure. The absence of any need for antibiotics and antiboitic resistance genes makes the chromosomal integrant C25 more com patible with current regulatory specifications for biocatalysts in large-scale commercial operations.  相似文献   

3.
The continuous wine fermentation process, which employs a newly designed tapered column type bioreactor and immobilized yeast cells (Montrachet 522), was studied and its fermentation performance was compared with batch and suspended cell continuous wine fermentation systems. It was found that a stable continuous culture fermentation process could be maintained for a period of 2–3 mo when the new bioreactor system packed with immobilized yeast cells was employed. The new bioreactor containing immobilized yeast cells performed significantly better than the suspended cell culture system or batch culture. The effluent wine from the continuous fermentor system contained 7.1% (v/v) ethanol and 0.18% (w/v) residual sugar at 0.01 h-1 dilution rate. The new continuous bioreactor system also gave 17–34 times higher maximum ethanol productivity compared to the conventional batch wine fermentation. At a low dilution rate, 0.01-1, as high as 92% sugar to ethanol yield was achieved. Based on the results obtained from this study, the possibility of developing a continuous wine cooler fermentation process was demonstrated. A two-stage continuous wine fermentation system may be designed and operated. The grape juice can be fed into the first-stage that is operated at about 0.2 h-1 dilution rate and the effluent from the first-stage is fed into the second-stage continuous fermentor operated at about 0.01 h-1 dilution rate. By doing so, a wine cooler can be produced continuously and efficiently, by employing the newly designed tapered column type bioreactor charged with the immobilized yeast cells.  相似文献   

4.
Two new ethanologenic strains (FBR4 and FBR5) of Escherichia coli were constructed and used to ferment corn fiber hydrolysate. The strains carry the plasmid pLO1297, which contains the genes from Zymomonas mobilis necessary for efficiently converting pyruvate into ethanol. Both strains selectively maintained the plasmid when grown anaerobically. Each culture was serially transferred 10 times in anaerobic culture with sugar-limited medium containing xylose, but noselective antibiotic. An average of 93 and 95% of the FBR4 and FBR5 cells, respectively, maintained pLO1297 in anaerobic culture. The fermentation performances of the repeatedly transferred cultures were compared with those of cultures freshly revived from stock in pH-controlled batch fermentations with 10% (w/v) xylose. Fermentation results were similar for all the cultures. Fermentations were completed within 60 h and ethanol yields were 86–92% of theoretical. Maximal ethanol concentrations were 3.9–4.2% (w/v). The strains were also tested for their ability to ferment corn fiber hydrolysate, which contained 8.5% (w/v) total sugars (2.0% arabinose, 2.8% glucose, and 3.7% xylose). E. coli FBR5 produced more ethanol than FBR4 from the corn fiber hydrolysate. E. coli FBR5 fermented all but 0.4% (w/v) of the available sugar, whereas strain FBR4 left 1.6% unconsumed. The fermentation with FBR5 was completed within 55 h and yielded 0.46 g of ethanol/g of available sugar, 90% of the maximum obtainable. Author to whom all correspondence and reprint requests should be addressed. Names are necessary to report factually on available data. However, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA im plies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

5.
This work was aimed at the production and rheological characterization of biopolymer by Sphingomonas capsulata ATCC 14666, using conventional and industrial media. The productivity reached the maximum of 0.038 g/L·h, at 208 rpm and 4% (w/v) of sucrose. For this condition, different concentrations of industrial medium were tested (2.66, 4, 6, and 8%). The best productivity was obtained using pretreated molasses 8% (w/v) (0.296 g/L·h), residue of textured soybean protein 6% (wt/v) (0.244 g/L·h) and crude molasses 8% (w/v) (0.192 g/L·h), respectively. Apparent viscosity presented similar results when compared with those in the literature for other biopolymers.  相似文献   

6.
Long-term (149 d) continuous fermentation was used to adapt a xylose-fermenting recombinant Zymomonas mobilis, strain 39676:pZB 4L, to conditioned (overlimed) dilute-acid yellow poplar hemicellulose hydrolyzate (“prehydrolyzate”). An “adapted” variant was isolated from a chemostat operating at a dilution rate of 0.03/h with a 50% (v/v) prehydrolyzate, corn steep liquor, and sugar-supplemented medium, at pH 5.75. The level of xylose and glucose in the medium was kept constant at 4% (w/v) and 0.8% (w/v), respectively. These sugar concentrations reflect the composition of the undiluted hardwood prehydrolyzate. The level of conditioned hardwood prehydrolyzate added to the medium was increased in 5% increments startingata level of 10%. At the upper level of 50% prehydrolyzate, the acetic-acid concentration was about 0.75% (w/v). The adapted variant exhibited improved xylose-fermentation performance in a pure-sugar, synthetic hardwood prehydrolyzate medium containing 4% xylose (w/v), 0.8% (w/v) glucose, and acetic acid in the range 0.4–1.0% (w/v). The ethanol yield was 0.48–0.50 g/g; equivalent to a sugar-to-ethanol conversion efficiency of 94–96% of theoretical maximum. The maximum growth yield and maintenance energy coefficients were 0.033 g dry cell mass (DCM)/g sugars and 0.41 g sugars/g DCM/h, respectively. The results confirm that long-term continuous adaptation is a useful technique for effecting strain improvement with respect to the fermentation of recalcitrant feedstocks.  相似文献   

7.
A biocatalyst prepared by the immobilization of Saccharomyces cerevisiae on the surface of the mineral kissiris was used in the present study for continuous potable-alcohol production. An ethanol productivity (calculated on the basis of liquid volume) of 10.5 g/L/h was obtained at a 0.7/h dilution rate, 121 g/L sucrose content, and 29.6% conversion employing molasse as feed material. Glucose, raisin extracts, and molasse were successively used as feed materials without stopping the operation of the reactor for 6 mo. The ethanol productivity and yield remained constant during the operational-stability study of the reactor, carried out for 44 d. Biomass productivity, yield, and free-cell concentration in glucose, raisin extracts, and molasse were examined. Finally, a system with two continuous reactors joined successively was also studied in the present investigation.  相似文献   

8.
Ethanol production from corn starch in a fluidized-bed bioreactor   总被引:1,自引:0,他引:1  
The production of ethanol from industrial dry-milled corn starch was studied in a laboratory-scale fluidized-bed bioreactor using immobilized biocatalysts. Saccharification and fermentation were carried out either simultaneously or separately. Simultaneous saccharification and fermentation (SSF) experiments were performed using small, uniform κ-carrageenan beads (1.5–2.5 mm in diameter) of co-immobilized glucoamylase and Zymomonas mobilis. Dextrin feeds obtained by the hydrolysis of 15% drymilled corn starch were pumped through the bioreactor at residence times of 1.5–4h. Single-pass conversion of dextrins ranged from 54–89%, and ethanol concentrations of 23–36 g/L were obtained at volumetric productivities of 9–15 g/L-h. Very low levels of glucose were observed in the reactor, indicating that saccharification was the rate-limiting step. In separate hydrolysis and fermentation (SHF) experiments, dextrin feed solutions of 150–160 g/L were first pumped through an immobilized-glucoamylase packed column. At 55°C and a residence time of 1 h, greater than 95% conversion was obtained, giving product streams of 162–172 g glucose/L. These streams were then pumped through the fluidized-bed bioreactor containing immobilized Z. mobilis. At a residence time of 2 h, 94% conversion and ethanol concentration of 70 g/L were achieved, resulting in an overall process productivity of 23 g/L-h. Atresidence times of 1.5 and 1 h, conversions of 75 and 76%, ethanol concentrations of 49 and 47 g/L, and overall process productivities of 19 and 25 g/L-h, respectively, were achieved.  相似文献   

9.
This study examined the continuous cofermentation performance characteristics of a dilute-acid “prehydrolysate-adapted” recombinant Zymomonas 39676:pZB4L and builds on the pH-stat batch fermentations with this recombinant that we reported on last year. Substitution of yeast extract by 1% (w/v) corn steep liquor (CSL) (50% solids) and Mg (2 mM) did not alter the coferm entation performance. Using declared assumptions, the cost of using CSL and Mg was estimated to be 12.5c/gal of ethanol with a possibility of 50% cost reduction using fourfold less CSL with 0.1% diammonium phosphate. Because of competition for a common sugar transporter that exhibits a higher affinity for glucose, utilization of glucose was complete whereas xylose was always present in the chemostat effluent. The ethanol yield, based on sugar used, was 94% of theoretical maximum. Altering the sugar ratio of the synthetic dilute acid hardwood prehydrolysate did not appear to significantly change the pattern of xylose utilization. Using a criterion of 80% sugar utilization for determining the maximum dilution rate (D max), changing the composition of the feed from 4% xylose to 3%, and simultaneously increasing the glucose from 0.8 to 1.8% shifted D max from 0.07 to 0.08/h. With equal amounts of both sugars (2.5%), D max was 0.07/h. By comparison to a similar investigation with rec Zm CP4:pZB5 with a 4% equal mixture of xylose and glucose, we observed that at pH 5.0, the D max was 0.064/h and shifted to 0.084/h at pH 5.75. At a level of 0.4% (w/v) acetic acid in the CSL-based medium with 3% xylose and 1.8% glucose at pH 5.75, the D max for the adapted recombinant shifted from 0.08 to 0.048/h, and the corresponding maximum volumetric ethanol productivity decreased 45%, from 1.52 to 0.84 g/(L·h). Under these conditions of continuous culture, linear regression of a Pirt plot of the specific rate of sugar utilization vs D showed that 4 g/L of acetic acid did not affect the maximum growth yield (0.030 g dry cell mass/g sugar), but did increase the maintenance coefficient twofold, from 0.46 to 1.0 g of sugar/(g of cell·h).  相似文献   

10.
Clostridium acetobutylicum strains used in most Chinese ABE (acetone–butanol–ethanol) plants favorably ferment starchy materials like corn, cassava, etc., rather than sugar materials. This is one major problem of ABE industry in China and significantly limits the exploitation of cheap waste sugar materials. In this work, cane molasses were utilized as substrate in ABE production by Clostridium saccharobutylicum DSM 13864. Under optimum conditions, total solvent of 19.80 g/L (13.40 g/L butanol) was reached after 72 h of fermentation in an Erlenmeyer flask. In a 5-L bioreactor, total solvent of 17.88 g/L was attained after 36 h of fermentation, and the productivity and yield were 0.50 g/L/h and 0.33 g ABE/g sugar consumption, respectively. To further enhance the productivity, a two-stage semicontinuous fermentation process was steadily operated for over 8 days (205 h, 26 cycles) with average productivity (stage II) of 1.05 g/L/h and cell concentration (stage I) of 7.43 OD660, respectively. The average batch fermentation time (stage I and II) was reduced to 21−25 h with average solvent of 15.27 g/L. This study provides valuable process data for the development of industrial ABE fermentation process using cane molasses as substrate.  相似文献   

11.
We explored the influence of dilution rate and pH in continuous cultures of Clostridium acetobutylicum. A 200-mL fibrous bed bioreactor was used to produce high cell density and butyrate concentrations at pH 5.4 and 35°C. By feeding glucose and butyrate as a cosubstrate, the fermentation was maintained in the solventogenesis phase, and the optimal butanol productivity of 4.6g/(L h) and a yield of 0.42 g/g were obtained at a dilution rate of 0.9h−1 and pH 4.3. Compared to the conventional acetone-butanol-ethanol fermentation, the new fermentation process greatly improved butanol yield, making butanol production from corn an attractive alternative to ethanol fermentation.  相似文献   

12.
Applied Biochemistry and Biotechnology - A multichamber tower fermentor, with a combined working volume of 30 L, was used to ferment sugar cane molasses to ethanol using a self-aggregating yeast...  相似文献   

13.
A new approach for the utilization of hemicellulosic hydrolysate from sugarcane bagasse is described. This approach consists of using the hydrolysate to dilute the conventional feedstock (sugarcane juice) to the usual sugar concentration (150 g/L) employed for the industrial production of ethanol. The resulting sugar mixture was used as the substrate to evaluate the performance of a continuous reactor incorporating a cell recycle module, operated at several dilution rates. An induced flocculent pentose-fermenting yeast strain was used for this bioconversion. Under the conditions used, the reactor performance was satisfactory at substrate feed rates of 30 g/(L·h) or less, corresponding to an ethanol productivity of about 11.0 g/(L·h) and an overall sugar conversion >95%. These results show real advantages over the existing alternatives for a better exploitation of surplus bagasse to increase industrial alcohol production.  相似文献   

14.
The effect of the oxygen transfer coefficient on the production of xylitol by biocon version of xylose present in sugarcane bagasse hemicellulosic hydrolysate using the yeast Candiada guilliermondii was investigated. Continuous cultivation was carried out in a 1.25-L fermentor at 30°C, pH 5.5, 300 rpm, and a dilution rate of 0.03/h, using oxygen transfer coefficients of 10,20, and 30/h. The results showed that the microbial xylitol production (11 g/L) increased by 108% with the decrease in the oxygen volumetric transfer coefficient from 30 to 20/h. The maximum values of xylitol productivity (0.7g/[L…h]) and yield (0.58 g/g) were obtained at k L a 20/h.  相似文献   

15.
The production of pullulan from beet molasses by a pigment-free strain of Aureobasidium pullulans on shake-flask culture was investigated. Combined pretreatment of molasses with sulfuric acid and activated carbon to remove potential fermentation inhibitors present in molasses resulted in a maximum pullulan concentration of 24 g/L, a biomass dry wt of 14 g/L, a pullulan yield of 52.5%, and a sugar utilization of 92% with optimum fermentation conditions (initial sugar concentration of 50 g/L and initial pH of 7.0). The addition of other nutrients as carbon and nitrogen supplements (olive oil, ammonium sulfate, yeast extract) did not further improve the production of the exopolysaccharides. Structural characterization of the isolated polysaccharides from the fermentation broths by 13C-nuclear magnetic resonance spectroscopy and pullulanase digestion combined with size-exclusion chromatography confirmed the identity of pullulan and the homogeneity (>93% dry basis) of the elaborated polysaccharides by the microorganism. Using multiangle laser light scattering and refractive index detectors in conjunction with high-performance size-exclusion chromatography molecular size distributions and estimates of the molecular weight (M w =2.1−4.1×105), root mean square of the radius of gyration (R g =30−38 nm), and polydispersity index (M w /M n =1.4−2.4) were obtained. The fermentation products of molasses pretreated with sulfuric acid and/or activated carbon were more homogeneous and free of contaminating proteins. In the concentration range of 2.8−10.0 (w/v), the solution’s rheologic behavior of the isolated pullulans was almost Newtonian (within 1 and 1200 s−1 at 20°C); a slight shear thinning was observed at 10.0 (w/v) for the high molecular weight samples. Overall, beet molasses pretreated with sulfuric acid and activated carbon appears as an attractive fermentation medium for the production of pullulan by A. pullulans.  相似文献   

16.
The effect of aeration rate and agitation speed on β-carotene production from molasses by Blakeslea trispora in a stirred-tank fermentor and optimization of the production of the pigment in a bubble column reactor were investigated. In addition, a central composite design was employed to determine the maximum β-carotene concentration at optimum values for the process variables (aeration rate, sugar concentration, linoleic acid, kerosene). By image analysis of the morphology of the fungus, a quantitative characterization of the hyphae and zygospores formed was obtained. The hyphae were differentiated to intacthyphae, vacuolated hyphae, evacuated cells and degenerated hyphae. An increased proportion of zygospores was correlated to high β-carotene production. In the stirred-tank fermentor, the highest concentration of the carotenoid pigment (92.0 mg/L) was obtained at an aeration rate of 1.5 vvm and agitation speed of 60 rpm. In the bubble column reactor, the aeration rate and concentration of sugars, linoleic acid, kerosene, and antioxidant significantly affected the production of β-carotene. In all cases, the fit of the model was found to be good. Aeration rate, sugar concentration, linoleic acid, and kerosene had a strong positive linear effect on β-carotene concentration. Moreover, the concentration of the pigment was significantly influenced by the negative quadratic effects of the given variables and by their positive or negative interactions. Maximum β-carotene concentration (360.2 mg/L) was obtained in culture grown in molasses solution containing 5% (w/v) sugar supplemented with linoleic acid (37.59 g/L), kerosene (39.11 g/L), and antioxidant (1.0 g/L).  相似文献   

17.
Acetone, butanol, ethanol (ABE, or solvents) were produced from starch-based packing peanuts in batch and continuous reactors. In a batch reactor, 18.9 g/L of total ABE was produced from 80 g/L packing peanuts in 110 h of fermentation. The initial and final starch concentrations were 69.6 and 11.1 g/L, respectively. In this fermentation, ABE yield and productivity of 0.32 and 0.17 g/(L·h) were obtained, respectively. Compared to the batch fermentation, continuous fermentation of 40 g/L of starch-based packing peanuts in P2 medium resulted in a maximum solvent production of 8.4 g/L at a dilution rate of 0.033 h−1. This resulted in a productivity of 0.27 g/(L·h). However, the reactor was not stable and fermentation deteriorated with time. Continuous fermentation of 35 g/L of starch solution resulted in a similar performance. These studies were performed in a vertical column reactor using Clostridium beijerinckii BA101 and P2 medium. It is anticipated that prolonged exposure of culture to acrylamide, which is formed during boiling/autoclaving of starch, affects the fermentation negatively.  相似文献   

18.
This study documents the similar pH-dependent shift in pyruvate metabolism exhibited byZymomonas mobilis ATCC 29191 and ATCC 39676 in response to controlled changes in their steady-state growth environment. The usual high degree of ethanol selectivity associated with glucose fermentation by Z.mobilis is associated with conditions that promote rapid and robust growth, with about 95% of the substrate (5% w/v glucose) being converted to ethanol and CO2, and the remaining 5% being used for the synthesis of cell mass. Conditions that promote energetic uncoupling cause the conversion efficiency to increase to 98% as a result of the reduction in growth yield (cell mass production). Under conditions of glucose-limited growth in a chemostat, with the pH controlled at 6.0, the conversion efficiency was observed to decrease from 95% at a specific growth rate of 0.2/h to only 80% at 0.042/h. The decrease in ethanol yield was solely attributable to the pH-dependent shift in pyruvate metabolism, resulting in the production of lactic acid as a fermentation byproduct. At a dilution rate (D) of 0.042/h, decreasing from pH 6.0 to 5.5 resulted in a decrease in lactic acid from 10.8 to 7.5 g/L. Lactic acid synthesis depended on the presence of yeast extract (YE) or tryptone in the 5% (w/v) glucose-mineral salts medium. At D = 0.15/h, reduction in the level of YE from 3 to 1 g/L caused a threefold decrease in the steady-state concentration of lactic acid at pH 6. No lactic acid was produced with the same mineral salts medium, with ammonium chloride as the sole source of assimilable nitrogen. With the defined salts medium, the conversion efficiency was 98% of theoretical maximum. When chemostat cultures were used as seed for pH-stat batch fermentations, the amount of lactic acid produced correlated well with the activity of the chemostat culture; however, the mechanism of this prolonged induction  相似文献   

19.
The hydrolytic activity of fungal originated β-glucosidase is exploited in several biotechnological processes to increase the rate and extent of saccharification of several cellulosic materials by hydrolyzing the cellobiose which inhibits cellulases. In a previous presentation, we reported the screening and liquid fermentation with Aspergillus niger, strain C-6 for β-glucosidase production at shake flask cultures in a basal culture medium with mineral salts, corn syrup liquor, and different waste lignocellulosic materials as the sole carbon source obtaining the maximum enzymatic activity after 5–6 d of 8.5 IU/mL using native sugar cane bagasse. In this work we describe the evaluation of fermentation conditions: growth temperature, medium composition, and pH, also the agitation and aeration effects for β-glucosidase production under submerged culture using a culture media with corn syrup liquor (CSL) and native sugar cane bagasse pith as the sole carbon source in a laboratory fermenter. The maximum enzyme titer of 7.2 IU/mL was obtained within 3 d of fermentation. This indicates that β-glucosidase productivity by Aspergillus niger C-6 is function of culture conditions, principally temperature, pH, culture medium conditions, and the oxygen supply given in the bioreactor. Results obtained suggest that this strain is a potential microorganism that can reach a major level of enzyme production and also for enzyme characterization.  相似文献   

20.
Batch fermentations of sugar cane bagasse hemicellulosic hydrolysate treated for removing the inhibitors of the fermentation were performed byCandida guilliermondii FTI20037 for xylitol production. The fermentative parameters agitation and aeration rate were studied aiming the maximization of xylitol production from this agroindustrial residue. The maximal xylitol volumetric productivity (0.87 g/L h) and yield (0.67 g/g) were attained at 400/min and 0.45 v.v.m. (KLa 27/h). According to the results, a suitable control of the oxygen input permitting the xylitol formation from sugar cane bagasse hydrolysate is required for the development of an efficient fermentation process for large-scale applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号