首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present measurements of the reflection and mode conversion of surface acoustic waves (SAWs) by scanning acoustic force microscopy (SAFM). The SAFM offers a unique combination of high lateral resolution and high sensitivity towards acoustic modes of all polarizations. Since a SAW mixing experiment of two waves can be performed even if the amplitude difference between both waves is 40 dB, wavefields of extremely small amplitudes can be investigated. Using SAFM, the reflection of SAWs from a metallic wedge is investigated with submicron lateral resolution. We are able to identify two reflected wave modes, a Love and a non-coupling Rayleigh mode, by measuring their phase velocities. Received: 4 December 2000 / Accepted: 6 December 2000 / Published online: 9 February 2001  相似文献   

2.
A new method for the investigation of ultrasonic waves on surfaces of solids based on scanning tunneling microscopy is presented. A sinusoidal high frequency signal is added to the tip voltage. Hence the tunneling current contains a component whose frequency is the difference of the frequencies of the acoustic wave field and the ac tip voltage. Amplitude and phase of this component carry the full information about the wave field.  相似文献   

3.
Shen ZH  Hess P  Huang JP  Lin YC  Chen KH 《Ultrasonics》2006,44(Z1):e1229-e1232
Laser-induced surface acoustic waves (SAWs) were used to study the influence of oxygen on the elastic properties of nanocrystalline diamond films. A series of samples was grown by chemical vapor deposition (CVD) on the (100) plane of p-type silicon for 3h under different O(2)/(CH(4)+H(2)) flow ratios from 0% to 8%. The elastic properties of these nanocrystalline diamond films were determined from the SAW dispersion curves. The maximum frequency realized was about 310 MHz in wideband SAW experiments and about 700 MHz using a narrowband mask method with several higher harmonics. It was found that the densities of all samples were surprisingly high, approaching the ideal value of diamond, whereas the Young's modulus increased from 700 to 950 GPa with the addition of oxygen. It is concluded that oxygen has a significant positive effect on the elastic properties of nanocrystalline diamond.  相似文献   

4.
The adsorption of DNA molecules on mica surface and the following desorption of DNA molecules at ethanol-mica interface were studied using atomic force microscopy. By changing DNA concentration, different morphologies on mica surface have been observed. A very uniform and orderly monolayer of DNA molecules was constructed on the mica surface with a DNA concentration of 30 ng/μL. When the samples were immersed into ethanol for about 15 min, various desorption degree of DNA from mica (0-99%) was achieved. It was found that with the increase of DNA concentration, the desorption degree of DNA from the mica at ethanol-mica interface decreased. And when the uniform and orderly DNA monolayers were formed on the mica surface, almost no DNA molecule desorbed from the mica surface in this process. The results indicated that the uniform and orderly DNA monolayer is one of the most stable DNA structures formed on the mica surface. In addition, we have studied the structure change of DNA molecules after desorbed from the mica surface with atomic force microscopy, and found that the desorption might be ascribed to the ethanol-induced DNA condensation.  相似文献   

5.
Efficient focussing of surface acoustic waves has been achieved using a properly shaped gold film deposit on the −22.3° rotated Y-cut surface of quartz. The acoustic wave field was studied with laser probing techniques. A more than threefold increase in intensity and a tenfold decrease in beam width was observed at the focal point. The focussing action was obtained with the elastic wave equivalent of the Fresnel phase-reversal zone plate of optics. The multiple foci of this device allowed a simultaneous generation of acoustic waves in nearly all directions on the surface. Consequently, the surface wave velocity anisotropy could be determined completely. The experimental results are in very good agreement with the calculated velocity anisotropy. Electromagnetic diffraction theory is adopted to the two dimensional anisotropic system to analyse the performance of the focussing device.  相似文献   

6.
Recent studies of thermal roughening on Si surfaces and kinetic roughening of some growing films, copper and tungsten, by using scanning tunneling microscopy and atomic force microscopy are reviewed. A logarithmic divergence of the surface height fluctuations of Si(111) vicinal surfaces is confirmed, in agreement with the theoretical prediction of rough surface in thermal equilibrium. For the kinetically formed rough surfaces, power law dependences of the interface width on the system size are clearly observed. Furthermore, the tungsten films show a short-range scaling regime and a long-range “smooth” regime. The roughness exponents α are compared with theoretical predictions: for the typical Cu electrode position condition (α=1/2), the exponent appears to be close to that found for local growth models, and for tungsten films (0.7~0.8), it is consistent with recent predictions for growth where surface diffusion is predominant.  相似文献   

7.
Long-range acoustic transport of excitons in GaAs quantum wells (QWs) is demonstrated. The mobile strain field of a surface acoustic wave creates a dynamic lateral type I modulation of the conduction and valence bands in a double-quantum-well (DQW) structure. This mobile potential modulation transports long-living indirect excitons in the DQW over several hundreds of μm.  相似文献   

8.
9.
In the experiments reported here we observed the generation of non-thermal, large amplitude acoustic surface waves at GHz frequencies on the surface of a GaAs crystal under intense illumination with 514.5 nm radiation from an Ar+ laser at room temperature. The acoustic surface waves were detected by optical Brillouin spectroscopy.  相似文献   

10.
Nano-sized oxide structures resulted from localized electrochemical oxidation induced by a negatively biased atomic force microscopy (AFM) tip operated with the non-contact mode were fabricated on p-GaAs(1 0 0) surface. The geometrical characteristics of the oxide patterns and their dependences on various fabrication parameters, e.g., the anodization time, the biased voltages, the tip scanning rates, as well as the formation mechanism and relevant growth kinetics are investigated. Results indicate that the height of the protruded oxide dots grow exponentially as a function of time in the initial stage of oxidation and soon reaches a maximum height depending linearly with the anodized voltages, in according with the behaviors predicted by space charge limited local oxidation mechanism. In addition, selective micro-Auger analysis of the anodized region reveals the formation of Ga(As)Ox, indicating the prominent role played by the field-induced nanometer-size water meniscus in producing the nanometer-scale oxide dots and bumps on p-GaAs(1 0 0) surface.  相似文献   

11.
12.
A new experimental method has been devised that directly determines the group velocities of surface acoustic waves. A point source and a point detector are employed to measure the ultrasonic transmission across a solid surface as a continuous function of the propagation direction. Results for single pulses give the times-of-flight for both Rayleigh surface waves (RSW's) and pseudo-surface-waves (PSW's). Calculations and measurements of the group velocities of the surface waves on silicon show some unanticipated behavior: fluid loading qualitiatively changes the group velocity curves for both RSW and PSW. In particular, the RSW branch gains an additional component which we denote here as an induced Rayleigh wave (IRW). If a wave train is employed in the experiment, the analog of phonon focusing is observed for the ultrasonic waves, modified by internal-diffraction effects. Systematic measurements of the wave intensities on silicon as a function of propagation distance are consistent with expected acoustic losses into the surrounding water: the attenuation length of a wave depends on the mode and frequency. A survey of surface-wave images on other crystals is included in this study.  相似文献   

13.
In a thin film of superconducting Y Ba2Cu3O7 the impact of surface acoustic waves (SAWs) traveling on the piezoelectric substrate is investigated. A pronounced interaction between the ultrasonic waves and the vortex system in the type II superconductor is observed. The occurrence of a SAW-induced dc voltage perpendicular to the sound path is interpreted as dragging of vortices by the piezoacoustic SAW, which acts as a conveyor for the flux quanta. The antisymmetry of this voltage with respect to the magnetic field directly evidences the induced, directed flux motion. This dynamic manipulation of vortices can be seen as an important step towards flux-based electronic devices.  相似文献   

14.
3 (FeGe)5 O12 magnetic garnet, Co/Pt multilayer sample and the high coercivity BaFe12O19 single crystal. We have prepared in UHV by electron beam evaporation magnetic sensors/tips which allowed us to reach high sensitivity and high resolution of our microscope. Ideal UHV conditions (pressure 5×10-11 \text{Torr}) helped us to observe domain wall contrast on all of studied samples by using a dynamic mode of operation of the force microscope. Received: 28 October 1996/Accepted: 5 November 1996  相似文献   

15.
High density polyethylene (HDPE) has been modified by Ag+ ion implantation with the energy of 60 keV. The total amount of implanted silver ions was 1, 5 and 12 × 1015 ions/cm2. The surface topography was observed by atomic force microscopy (AFM), while the surface composition changes were detected using phase imaging AFM. Surface topography changes were studied in detail using 3D surface parameters analyses. The average roughness decreased for the implanted HDPE indicating the flattening of the surface. Phase AFM images indicated the homogenization of the polyethylene during ion implantation, while histogram analyses confirmed the change in surface composition.  相似文献   

16.
Solid-like structures formed on the graphite basal surface following the liquid-phase adsorption of n-octylamine have been studied using tapping-mode atomic force microscopy. Following deposition of a 1 μl droplet and subsequent annealing at 100°C, the amine formed randomly distributed islands categorised into two types based upon the morphology at the vapour interface. Evidence was found for the parallel orientation of the molecular axis at the basal plane, the orientation anticipated from studies of other aliphatic molecules. The results suggest the formation of vertically oriented molecular clusters at the vapour interface. Similarities were found with previous results of the adsorption of n-alkanes at the basal surface, highlighting the importance of n-alkyl chain interactions. Similarities and differences were observed between amine and alkane behaviour at the graphite steps. Annealing at 200°C reduced the island coverage, particularly at steps, and at 300°C no decoration was observed on the surface. The activation energy for surface diffusion and the energy difference between surface and vapour molecules are estimated. Upon deposition of a 5 μl droplet of amine onto graphite, an aggregate morphology decorated terraces and steps. Measurements suggest that the aggregate surface consisted of molecular clusters oriented towards the surface normal.  相似文献   

17.
18.
Atomic force microscopy (AFM) in air is used to study the (110) cleaved surface of strained (100) InxGa1-xAs/ InP heterostructures for different compositions and thicknesses of the ternary compound layers. We find that the elastic strain relaxation induces a surface undulation of a few ? amplitude, even for very small misfits, provided the layers are thick enough. Using finite-element calculations of the strain relaxation near the cleaved edge, we reproduce quantitatively the AFM observations for compressive- as well as for tensile-strained layers with an accuracy better than 0.1 nm. This demonstrates the ability of AFM to quantify strain distributions by making use of surface profile measurements. Received: 9 November 1998 / Accepted: 11 March 1999 / Published online: 7 July 1999  相似文献   

19.
肖夏  陶冶  孙远 《中国物理 B》2014,(10):428-432
The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical charac- teristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion curve with the experimental dispersion curve. In this paper, the influence of sample roughness on the precision of SAW mechanical detection is inves- tigated in detail. Random roughness values at the surface of low-k film and at the interface between this low-k film and the substrate are obtained by the Monte Carlo method. The dispersive characteristic of SAW on the layered structure with rough surface and rough interface is modeled by numerical simulation of finite element method. The Young's moduli of the Black DiamondTM samples with different roughness values are determined by SAWs in the experiment. The results show that the influence of sample roughness is very small when the root-mean-square (RMS) of roughness is smaller than 50 nm and correlation length is smaller than 20 μm. This study indicates that the SAW technique is reliable and precise in the nondestructive mechanical detection for low-k films.  相似文献   

20.
In this article we introduce the concept of multifrequency radiation force produced by a polychromatic acoustic beam propagating in a fluid. This force is a generalization of dynamic radiation force due to a bichromatic wave. We analyse the force exerted on a rigid sphere by a plane wave with N frequency components. Our approach is based on solving the related scattering problem, taking into account the nonlinearity of the fluid. The radiation force is calculated by integrating the excess of pressure in the quasilinear approximation over the surface of the sphere. Results reveal that the spectrum of the multifrequency radiation force is composed of up to N(N−1)/2 distinct frequency components. In addition, the radiation force generated by plane progressive waves is predominantly caused by parametric amplification. This is a phenomenon due to the nonlinear nature of wave propagation in fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号