首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nematic liquid crystals at rough and fluctuating interfaces are analyzed within the Frank elastic theory and the Landau–de Gennes theory. We study specifically interfaces that locally favor planar anchoring. In the first part we reconsider the phenomenon of Berreman anchoring on fixed rough surfaces, and derive new simple expressions for the corresponding azimuthal anchoring energy. Surprisingly, we find that for strongly aligning surfaces, it depends only on the geometrical surface anisotropy and the bulk elastic constants, and not on the precise values of the chemical surface parameters. In the second part, we calculate the capillary waves at nematic-isotropic interfaces. If one neglects elastic interactions, the capillary wave spectrum is characterized by an anisotropic interfacial tension. With elastic interactions, the interfacial tension, i.e., the coefficient of the leading q2 term of the capillary wave spectrum, becomes isotropic. However, the elastic interactions introduce a strongly anisotropic cubic q3 term. The amplitudes of capillary waves are largest in the direction perpendicular to the director. These results are in agreement with previous molecular dynamics simulations.  相似文献   

2.
In terms of a linear mathematical model of a capillary-gravitational flow in a two-layer liquid with a finite-thickness upper layer, it is shown analytically that an analogue of the dead water phenomenon exists in the domain of capillary waves, which was previously observed only in gravitational waves. This phenomenon shows up as an exponential increase in the capillary wave amplitude at the interface with the surface tension coefficient at the interface tending to zero. It is found that an external electric field displaces this phenomenon toward the range of finite surface tension coefficients.  相似文献   

3.
The structure of the capillary-relaxation motion spectrum in a liquid with a charged free surface has been investigated taking into account the viscosity relaxation effect. On the basis of numerical analysis of the dispersion equation for the wave motion in a viscoelastic incompressible liquid, it is shown that for a given wave number the range of characteristic relaxation times in which relaxation-type wave motion exists is limited and expands with increasing wave number. The growth rate of instability of the charged liquid surface markedly depends on the characteristic relaxation time and increases with its growth; in liquids with elastic properties, the energy dissipation rate of capillary motion is enhanced. At a surface charge density that is supercritical for the onset of Tonks-Frenkel instability, both purely gravitational waves and waves of a relaxational nature exist.  相似文献   

4.
Photothermal/photoacoustic(PT/PA) spectroscopy provides useful knowledge about optical absorption, as well as the thermal and acoustical properties of a liquid sample. For microfluidic biosensing and bioanalysis where an extremely small volume of liquid sample is encapsulated, simultaneous PT/PA detection remains a challenge. In this work, we present a new optofluidic device based on a liquid-core optical ring resonator(LCORR) for the investigation of PT and PA effects in fluid samples. A focused 532 nm pulsed light optically heats the absorptive fluid in a capillary to locally create a transient temperature rise, as well as acoustic waves. A1550 nm CW laser light is quadrature-locked to detect the resonance spectrum shift of the LCORR and study thermal diffusion and acoustic wave propagation in the capillary. This modality provides an optofluidic investigative platform for biological/biochemical sensing and spectroscopy.  相似文献   

5.
激光衍射法测量表面张力和毛细波波速与温度的关系   总被引:1,自引:1,他引:0  
利用激光衍射对液体表面张力和毛细波波速与温度的关系进行了研究.当激光斜入射到毛细波上,观察到稳定的、清晰的衍射图样,运用光栅衍射理论对该实验现象进行了分析,测量了不同温度下蒸馏水的表面张力和毛细波波速,用最小二乘法对实验数据进行拟合,给出了表面张力和毛细波波速与温度的解析关系,发现表面张力和毛细波波速随着温度的增加而减小,并和温度呈近似线性关系.根据其机理,建立了激光衍射法实时的和非接触的测量不同温度下液体表面张力和毛细波波速的方法.  相似文献   

6.
7.
The surface tension, viscosity, and damping coefficient of surface waves on a liquid sample have been determined by observing the diffraction of an optical beam. To achieve high accuracy, a He-Ne laser having a high brightness and coherence was used as a light source. Experiments illustrating and verifying the techniques are described.Values of the surface tension for different samples have been measured with a standard deviation of less than ±0.6% for frequencies of the ripple motion ranging from 500 to 3 000 Hz over the temperature range 20–45°C. The viscosity and damping coefficient of water were measured for frequencies in the range 600–1500 Hz. The values obtained agree with those available from the literature.  相似文献   

8.
The dynamics of nanoscopic capillary waves on simple liquid surfaces is analyzed using molecular dynamics simulations. Each Fourier mode of the surface is obtained from the molecular positions, and its time behavior compared with the hydrodynamic prediction. We trace the transition from propagating to overdamped modes, at short wavelengths. The damping rate is in very good agreement with the hydrodynamic theory up to surprisingly small wavelengths, of about four molecular diameters, but only if the wave number dependent surface tension is considered. At shorter scales, surface tension hydrodynamics break down and we find a transition to a molecular diffusion regime.  相似文献   

9.
We study droplet coalescence in a molecular system with a variable viscosity and a colloid-polymer mixture with an ultralow surface tension. When either the viscosity is large or the surface tension is small enough, we observe that the opening of the liquid bridge initially proceeds at a constant speed set by the capillary velocity. In the first system we show that inertial effects become dominant at a Reynolds number of about 1.5+/- 0.5 and the neck then grows as the square root of time. In the second system we show that decreasing the surface tension by a factor of 10(5) opens the way to a more complete understanding of the hydrodynamics involved.  相似文献   

10.
An external electric field changes the dispersion law of waves on the surface of a liquid. Besides the usual capillary term (∝k 3, k is the wave number) and gravitational term (∝k), a term quadratic in the wave vector appears in the expression for the square of the frequency in a homogeneous field. These excitations are associated with the variation of the coefficient of surface tension of the liquid at low temperatures. In the case of a large field tangent to the surface, the correction is proportional to T 8/3, unlike the T 7/3 correction in the absence of a field. Zh. éksp. Teor. Fiz. 111, 1369–1372 (April 1997)  相似文献   

11.
Thermodynamic and structural properties of mixing of molten Tl–Na alloys at 673 K have been investigated using quasi-chemical model. To understand the mixing behaviour in more detail, emphasis is placed on the role of interaction energy term, and viscosity and surface tension of the alloys have also been analysed under statistical considerations. Our study shows negative deviation from the Raoultian behaviour in the properties of Tl–Na alloy thereby indicating hetero-coordination in the Tl–Na melt at 673 K in the full range of concentration. Theoretically, computed thermodynamic data at 673 K agree very well with the corresponding experimental data. The viscosities of the alloys computed from Kaptay equation show small negative deviation and those computed from Singh and Sommer’s formulation show small positive deviation from ideal values while the Budai-Benko-Kaptay equation predicts noticeable negative deviation in Na-rich end and positive deviation in Tl-rich end of the composition. The calculations of surface tension reveal that results obtained from layered structure approach and compound formation model are in good agreement in the Na-rich side and in reasonable agreement in Tl-rich side of the composition, while those computed from Butler equation show noticeable deviations in the intermediate compositions. Both the viscosity and surface tension of liquid Tl–Na alloys increase with addition of Tl-component, viscosity having approximately linear variation with concentration. The study shows that there is non-linear variation in surface composition with bulk concentration and for most of the compositions the surface of the alloy is enriched with Na-atoms which segregate to the surface.  相似文献   

12.
The nonlinear capillary wave motion in a two-layer liquid with a free surface is analytically investigated accurate to the second order of smallness in ratio of the wave amplitude to the layer thickness. The layers differ in physicochemical properties. A capillary analogue to the “dead water” effect is observed in the system in both linear and quadratic approximations. In the absence of an electric charge at the interfaces, internal nonlinear resonance interaction between capillary waves is also absent regardless of the place of their origination. When there is a charge at the interlayer boundary, capillary waves resonantly interact with each other.  相似文献   

13.
This paper is a comparative study on the characteristics of high-speed liquid jets injected in surrounding water and air using shadowgraph technique. One of the main objectives is to investigate the effects of liquid’s physical properties, used to generate the high-speed liquid jets, on jet generation’s characteristics. Moreover, comparative investigations on effects of those liquid jets after injected in water and air are reported. The high-speed liquid jets were generated by the impact of a projectile launched by a horizontal single-stage power gun. The impact-driven high-speed liquid jets were visualized by shadowgraph technique and images were recorded by a high-speed digital video camera. The process of impact-driven high-speed liquid jet injection in air and water, oblique shock waves, jet-induced shock waves, shock waves propagation, the bubble behavior, bubble collapse-induced rebound shock waves and bubble cloud regeneration were clearly observed. It was found that different properties of liquid (surface tension and kinematic viscosity) affect the jet maximum velocity and shape of the jet. Bubble behaviors were only found for the jet injected in water. From the shadowgraph images, it is found that the maximum average jet velocity, expansion and contraction velocities of bubble in axial direction increase when the value of the multiplied result of surface tension by kinematic viscosity increases. Therefore, surface tension and kinematic viscosity are the significant physical properties that affect characteristics of high-speed liquid jets.  相似文献   

14.
It is well known that many porous media such as rocks have heterogeneities at nearly all scales. We applied Biot's poroelastic theory to study the propagation of elastic waves in isotropic porous matrix with spherical inclusions. It is assumed that the heterogeneity dimension exceeds significantly the pore size. Modified boundary conditions on poroelastic interface are used to take into account the surface tension effects. The effective wavenumber is calculated using the Waterman and Truell multiple scattering theory, which relates the effective wave number to the amplitude of the wave field scattered by a single inclusion. The calculations were performed for a medium containing fluid-filled cavities or porous inclusions contrasting in saturating fluid elastic properties. The results obtained show that when we consider elastic wave propagation in poroelastic medium containing soft inclusions, it is necessary to take into account the capillary pressure. The influence of the surface tension depends on the diffraction parameter and it is a maximum in the low frequency range.  相似文献   

15.
It is well known that many porous media such as rocks have heterogeneities at nearly all scales. We applied Biot's poroelastic theory to study the propagation of elastic waves in isotropic porous matrix with spherical inclusions. It is assumed that the heterogeneity dimension exceeds significantly the pore size. Modified boundary conditions on poroelastic interface are used to take into account the surface tension effects. The effective wavenumber is calculated using the Waterman and Truell multiple scattering theory, which relates the effective wave number to the amplitude of the wave field scattered by a single inclusion. The calculations were performed for a medium containing fluid-filled cavities or porous inclusions contrasting in saturating fluid elastic properties. The results obtained show that when we consider elastic wave propagation in poroelastic medium containing soft inclusions, it is necessary to take into account the capillary pressure. The influence of the surface tension depends on the diffraction parameter and it is a maximum in the low frequency range.  相似文献   

16.
The effects of water addition and temperature on some physicochemical properties of room temperature ionic liquids containing chromium chloride, choline chloride and water in the molar ratio of 1:2.5:x (where x = 6, 9, 12, 15 or 18) have been studied. The density, viscosity, surface tension and conductivity of the liquid mixtures were measured for the temperature range of 25 to 80 °C. Increasing both water content and temperature resulted in decreasing density, surface tension and viscosity and increasing electrical conductivity. The average void radii (hole sizes) for the liquid systems under study were calculated; they were in the range of 1.21 to 1.82 Å. The average hole size was stated to grow with increasing both temperature and water content in the mixture. The variation of the average void radii correlates with the change in viscosity and conductivity. The activation energies of viscous flow and conductivity diminishes with increasing water content in the liquid mixture. There is a strong linear correlation between conductivity and fluidity which indicates that the conductivity of the ionic liquid mixtures is generally controlled by the ionic mobility. A moderate viscosity and higher conductivity of the Cr(III)-containing ionic liquids with extra-water addition (at x > 9) make them suitable for the development of chromium electrodeposition processes.  相似文献   

17.
The Mathieu differential equation for the evolution of the amplitudes of arbitrarily symmetric capillary waves (with arbitrary azimuthal numbers) propagating over the surface of a incompressible dielectric cylindrical liquid jet is analyzed. The jet is placed in a time-periodic uniform electric field that is parallel to the symmetry axis of the jet unperturbed by the wave flow. It is found that the time-varying electric field pressure parametrically builds up both axisymmetric waves on the jet surface, flexural waves, and flexural deformation waves. At a fixed frequency of the external field, waves with different wavelengths and symmetries (different azimuthal numbers) may build up simultaneously in the main demultiplication resonance, as well as in secondary and tertiary resonances. The parametric buildup of flexural deformation waves has a threshold relative to the external field frequency: it takes place at the field frequency exceeding a certain value depending on the jet radius and physicochemical properties of the liquid.  相似文献   

18.
In the domain of capillary waves, a bicubic dispersion relation is derived and analyzed for surface and internal capillary–gravitational waves in a three-layer liquid with a free surface. It is shown that the ratio of the internal wave amplitudes to the surface wave amplitudes is fairly large if the trivial condition of a “homogeneous liquid” is discarded. The amplitude ratio between the internal waves themselves (generated at different interfaces) may be both greater and smaller than unity depending on the physical parameters of the system. Specifically, it strongly depends on the densities of the layers and their thicknesses.  相似文献   

19.
An analytical expression for the profile of a finite-amplitude wave on the free charged surface of a deep low-viscosity conducting liquid is derived in an approximation quadratic in wave amplitude-to-wavelength ratio. It is shown that viscosity causes the wave amplitude to decay with time and makes the wave profile asymmetric at surface charge densities subcritical in terms of Tonks-Frenkel instability. At supercritical values of the surface charge density, taking account of viscosity decreases the growth rate of emissive protrusions on the unstable free surface, slightly broadens them for short waves, and narrows for long ones. Analytical expressions for the wave frequencies, damping rates, and instability growth rates with regard to viscosity are found.  相似文献   

20.
Daobin Luo  Runcai Miao  Jianke Liu 《Optik》2012,123(13):1146-1148
We describe a simple experiment on the interference of refraction light by ultraweak liquid surface wave at low frequency. The surface wave profile is generated by electrically driven vertical oscillations exciters. The high visibility and stable laser interference fringes were gathered experimentally. The theoretical light intensity distribution agrees well with the observations. In particular, we show the relation between the light intensity distribution and the characteristic features of the surface wave. In addition, we can measure the amplitude and wavelength of the ultraweak liquid surface wave at low frequency by this means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号